![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slotsdifipndx | Structured version Visualization version GIF version |
Description: The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21068 and sravsca 21070. (Contributed by AV, 12-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifipndx | ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6re 12327 | . . . 4 ⊢ 6 ∈ ℝ | |
2 | 6lt8 12430 | . . . 4 ⊢ 6 < 8 | |
3 | 1, 2 | ltneii 11352 | . . 3 ⊢ 6 ≠ 8 |
4 | vscandx 17294 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
5 | ipndx 17305 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
6 | 4, 5 | neeq12i 2997 | . . 3 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8) |
7 | 3, 6 | mpbir 230 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
8 | 5re 12324 | . . . 4 ⊢ 5 ∈ ℝ | |
9 | 5lt8 12431 | . . . 4 ⊢ 5 < 8 | |
10 | 8, 9 | ltneii 11352 | . . 3 ⊢ 5 ≠ 8 |
11 | scandx 17289 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
12 | 11, 5 | neeq12i 2997 | . . 3 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) |
13 | 10, 12 | mpbir 230 | . 2 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
14 | 7, 13 | pm3.2i 469 | 1 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ≠ wne 2930 ‘cfv 6543 5c5 12295 6c6 12296 8c8 12298 ndxcnx 17156 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-slot 17145 df-ndx 17157 df-sca 17243 df-vsca 17244 df-ip 17245 |
This theorem is referenced by: srasca 21068 sravsca 21070 |
Copyright terms: Public domain | W3C validator |