MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen2 Structured version   Visualization version   GIF version

Theorem fzen2 13336
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.)
Hypothesis
Ref Expression
fzennn.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
fzen2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))

Proof of Theorem fzen2
StepHypRef Expression
1 eluzel2 12240 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 12245 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 1z 12004 . . . . 5 1 ∈ ℤ
4 zsubcl 12016 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 1, 4sylancr 590 . . . 4 (𝑁 ∈ (ℤ𝑀) → (1 − 𝑀) ∈ ℤ)
6 fzen 12923 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
71, 2, 5, 6syl3anc 1368 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
81zcnd 12080 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
9 ax-1cn 10588 . . . . 5 1 ∈ ℂ
10 pncan3 10887 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
118, 9, 10sylancl 589 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 + (1 − 𝑀)) = 1)
12 zcn 11978 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 zcn 11978 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 addsubass 10889 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
159, 14mp3an2 1446 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1612, 13, 15syl2an 598 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
172, 1, 16syl2anc 587 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1817eqcomd 2807 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀))
1911, 18oveq12d 7157 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀)))
207, 19breqtrd 5059 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)))
21 peano2uz 12293 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
22 uznn0sub 12269 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
23 fzennn.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2423fzennn 13335 . . 3 (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2521, 22, 243syl 18 . 2 (𝑁 ∈ (ℤ𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
26 entr 8548 . 2 (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2720, 25, 26syl2anc 587 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  Vcvv 3444   class class class wbr 5033  cmpt 5113  ccnv 5522  cres 5525  cfv 6328  (class class class)co 7139  ωcom 7564  reccrdg 8032  cen 8493  cc 10528  0cc0 10530  1c1 10531   + caddc 10533  cmin 10863  0cn0 11889  cz 11973  cuz 12235  ...cfz 12889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890
This theorem is referenced by:  fzfi  13339
  Copyright terms: Public domain W3C validator