MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen2 Structured version   Visualization version   GIF version

Theorem fzen2 13910
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.)
Hypothesis
Ref Expression
fzennn.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
Assertion
Ref Expression
fzen2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))

Proof of Theorem fzen2
StepHypRef Expression
1 eluzel2 12774 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 12779 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 1z 12539 . . . . 5 1 ∈ ℤ
4 zsubcl 12551 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 1, 4sylancr 587 . . . 4 (𝑁 ∈ (ℤ𝑀) → (1 − 𝑀) ∈ ℤ)
6 fzen 13478 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
71, 2, 5, 6syl3anc 1373 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
81zcnd 12615 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
9 ax-1cn 11102 . . . . 5 1 ∈ ℂ
10 pncan3 11405 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
118, 9, 10sylancl 586 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 + (1 − 𝑀)) = 1)
12 zcn 12510 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 zcn 12510 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 addsubass 11407 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
159, 14mp3an2 1451 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1612, 13, 15syl2an 596 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
172, 1, 16syl2anc 584 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1817eqcomd 2735 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀))
1911, 18oveq12d 7387 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀)))
207, 19breqtrd 5128 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)))
21 peano2uz 12836 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
22 uznn0sub 12808 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
23 fzennn.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2423fzennn 13909 . . 3 (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2521, 22, 243syl 18 . 2 (𝑁 ∈ (ℤ𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
26 entr 8954 . 2 (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2720, 25, 26syl2anc 584 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444   class class class wbr 5102  cmpt 5183  ccnv 5630  cres 5633  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354  cen 8892  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  fzfi  13913
  Copyright terms: Public domain W3C validator