![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzen2 | Structured version Visualization version GIF version |
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.) |
Ref | Expression |
---|---|
fzennn.1 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
Ref | Expression |
---|---|
fzen2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12881 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | eluzelz 12886 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | 1z 12645 | . . . . 5 ⊢ 1 ∈ ℤ | |
4 | zsubcl 12657 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ) | |
5 | 3, 1, 4 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (1 − 𝑀) ∈ ℤ) |
6 | fzen 13578 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀)))) | |
7 | 1, 2, 5, 6 | syl3anc 1370 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀)))) |
8 | 1 | zcnd 12721 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℂ) |
9 | ax-1cn 11211 | . . . . 5 ⊢ 1 ∈ ℂ | |
10 | pncan3 11514 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1) | |
11 | 8, 9, 10 | sylancl 586 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + (1 − 𝑀)) = 1) |
12 | zcn 12616 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
13 | zcn 12616 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | addsubass 11516 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) | |
15 | 9, 14 | mp3an2 1448 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
16 | 12, 13, 15 | syl2an 596 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
17 | 2, 1, 16 | syl2anc 584 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
18 | 17 | eqcomd 2741 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀)) |
19 | 11, 18 | oveq12d 7449 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀))) |
20 | 7, 19 | breqtrd 5174 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀))) |
21 | peano2uz 12941 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
22 | uznn0sub 12915 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) | |
23 | fzennn.1 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
24 | 23 | fzennn 14006 | . . 3 ⊢ (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
25 | 21, 22, 24 | 3syl 18 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
26 | entr 9045 | . 2 ⊢ (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | |
27 | 20, 25, 26 | syl2anc 584 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5688 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ωcom 7887 reccrdg 8448 ≈ cen 8981 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: fzfi 14010 |
Copyright terms: Public domain | W3C validator |