![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubassd | Structured version Visualization version GIF version |
Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addsubassd | ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addsubass 10749 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1364 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 (class class class)co 7021 ℂcc 10386 + caddc 10391 − cmin 10722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-po 5367 df-so 5368 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-ltxr 10531 df-sub 10724 |
This theorem is referenced by: assraddsubd 10907 mulsubdivbinom2 13477 hashun3 13598 swrdccatin2 13932 bpoly4 15251 gsumccat 17822 mndodconglem 18405 efgredleme 18601 ovollb2lem 23777 ply1divex 24418 tanarg 24888 affineequiv 25087 chordthmlem4 25099 heron 25102 dquartlem2 25116 quart 25125 bposlem9 25555 2lgslem3b 25660 2lgslem3c 25661 2lgslem3d 25662 dchrisum0re 25776 mulog2sumlem1 25797 selberglem2 25809 selberg4 25824 selbergr 25831 selberg3r 25832 selberg34r 25834 brbtwn2 26379 ax5seglem2 26403 wwlksnextwrd 27367 wwlksnextinj 27369 clwwlkccatlem 27459 ex-ind-dvds 27937 lt2addrd 30168 archirngz 30461 fibp1 31281 dnibndlem10 33442 bj-bary1lem 34154 acongeq 39091 jm3.1lem2 39126 inductionexd 40016 fzisoeu 41134 sumnnodd 41479 stoweidlem26 41880 wallispilem4 41922 wallispi2lem1 41925 wallispi2lem2 41926 fourierdlem26 41987 fourierdlem41 42002 fourierdlem42 42003 fourierdlem48 42008 fourierdlem63 42023 fourierdlem107 42067 smfmullem1 42635 fmtnorec2lem 43213 fmtnorec3 43219 lighneallem3 43281 bgoldbtbndlem2 43480 m1modmmod 44089 itscnhlc0yqe 44254 2itscplem1 44273 2itscplem3 44275 |
Copyright terms: Public domain | W3C validator |