MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubassd Structured version   Visualization version   GIF version

Theorem addsubassd 11361
Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addsubassd (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))

Proof of Theorem addsubassd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 addsubass 11240 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
51, 2, 3, 4syl3anc 1370 1 (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  (class class class)co 7284  cc 10878   + caddc 10883  cmin 11214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-ltxr 11023  df-sub 11216
This theorem is referenced by:  assraddsubd  11398  mulsubdivbinom2  13985  hashun3  14108  swrdccatin2  14451  bpoly4  15778  gsumsgrpccat  18487  gsumccatOLD  18488  mndodconglem  19158  efgredleme  19358  ovollb2lem  24661  ply1divex  25310  tanarg  25783  affineequiv  25982  chordthmlem4  25994  heron  25997  dquartlem2  26011  quart  26020  bposlem9  26449  2lgslem3b  26554  2lgslem3c  26555  2lgslem3d  26556  dchrisum0re  26670  mulog2sumlem1  26691  selberglem2  26703  selberg4  26718  selbergr  26725  selberg3r  26726  selberg34r  26728  brbtwn2  27282  ax5seglem2  27306  wwlksnextwrd  28271  wwlksnextinj  28273  clwwlkccatlem  28362  ex-ind-dvds  28834  lt2addrd  31083  cycpmco2lem3  31404  cycpmco2lem4  31405  cycpmco2lem5  31406  cycpmco2lem6  31407  cycpmco2  31409  archirngz  31452  fibp1  32377  dnibndlem10  34676  bj-bary1lem  35490  lcmineqlem22  40065  sticksstones10  40118  sticksstones12a  40120  3cubeslem2  40514  acongeq  40812  jm3.1lem2  40847  inductionexd  41772  fzisoeu  42846  sumnnodd  43178  stoweidlem26  43574  wallispilem4  43616  wallispi2lem1  43619  wallispi2lem2  43620  fourierdlem26  43681  fourierdlem41  43696  fourierdlem42  43697  fourierdlem48  43702  fourierdlem63  43717  fourierdlem107  43761  smfmullem1  44336  fmtnorec2lem  45005  fmtnorec3  45011  lighneallem3  45070  bgoldbtbndlem2  45269  m1modmmod  45878  itscnhlc0yqe  46116  2itscplem1  46135  2itscplem3  46137
  Copyright terms: Public domain W3C validator