Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem3 Structured version   Visualization version   GIF version

Theorem dnibndlem3 36503
Description: Lemma for dnibnd 36514. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem3.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem3.2 (𝜑𝐴 ∈ ℝ)
dnibndlem3.3 (𝜑𝐵 ∈ ℝ)
dnibndlem3.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem3 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))

Proof of Theorem dnibndlem3
StepHypRef Expression
1 dnibndlem3.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21recnd 11268 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3 halfre 12459 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
51, 4jca 511 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
6 readdcl 11217 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
8 reflcl 13818 . . . . . . . . 9 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
109recnd 11268 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
11 halfcn 12460 . . . . . . . 8 (1 / 2) ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
1310, 12subcld 11599 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
14 dnibndlem3.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1514recnd 11268 . . . . . 6 (𝜑𝐴 ∈ ℂ)
162, 13, 153jca 1128 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ))
17 npncan 11509 . . . . 5 ((𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1816, 17syl 17 . . . 4 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1918eqcomd 2742 . . 3 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)))
20 dnibndlem3.4 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
2120oveq1d 7425 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)))
2214, 4jca 511 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
23 readdcl 11217 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
25 reflcl 13818 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2726recnd 11268 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
28 1cnd 11235 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28, 123jca 1128 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ))
30 addsubass 11497 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
3129, 30syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
32 1mhlfehlf 12465 . . . . . . . 8 (1 − (1 / 2)) = (1 / 2)
3332a1i 11 . . . . . . 7 (𝜑 → (1 − (1 / 2)) = (1 / 2))
3433oveq2d 7426 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3521, 31, 343eqtrd 2775 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3635oveq1d 7425 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
3736oveq2d 7426 . . 3 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3819, 37eqtrd 2771 . 2 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3938fveq2d 6885 1 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  1c1 11135   + caddc 11137  cmin 11471   / cdiv 11899  2c2 12300  cfl 13812  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fl 13814
This theorem is referenced by:  dnibndlem9  36509
  Copyright terms: Public domain W3C validator