Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem3 Structured version   Visualization version   GIF version

Theorem dnibndlem3 34730
Description: Lemma for dnibnd 34741. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem3.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem3.2 (𝜑𝐴 ∈ ℝ)
dnibndlem3.3 (𝜑𝐵 ∈ ℝ)
dnibndlem3.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem3 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))

Proof of Theorem dnibndlem3
StepHypRef Expression
1 dnibndlem3.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21recnd 11082 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3 halfre 12266 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
51, 4jca 512 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
6 readdcl 11033 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
8 reflcl 13595 . . . . . . . . 9 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
109recnd 11082 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
11 halfcn 12267 . . . . . . . 8 (1 / 2) ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
1310, 12subcld 11411 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
14 dnibndlem3.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1514recnd 11082 . . . . . 6 (𝜑𝐴 ∈ ℂ)
162, 13, 153jca 1127 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ))
17 npncan 11321 . . . . 5 ((𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1816, 17syl 17 . . . 4 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1918eqcomd 2742 . . 3 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)))
20 dnibndlem3.4 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
2120oveq1d 7331 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)))
2214, 4jca 512 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
23 readdcl 11033 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
25 reflcl 13595 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2726recnd 11082 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
28 1cnd 11049 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28, 123jca 1127 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ))
30 addsubass 11310 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
3129, 30syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
32 1mhlfehlf 12271 . . . . . . . 8 (1 − (1 / 2)) = (1 / 2)
3332a1i 11 . . . . . . 7 (𝜑 → (1 − (1 / 2)) = (1 / 2))
3433oveq2d 7332 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3521, 31, 343eqtrd 2780 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3635oveq1d 7331 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
3736oveq2d 7332 . . 3 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3819, 37eqtrd 2776 . 2 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3938fveq2d 6815 1 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cmpt 5169  cfv 6465  (class class class)co 7316  cc 10948  cr 10949  1c1 10951   + caddc 10953  cmin 11284   / cdiv 11711  2c2 12107  cfl 13589  abscabs 15021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-sup 9277  df-inf 9278  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-n0 12313  df-z 12399  df-uz 12662  df-fl 13591
This theorem is referenced by:  dnibndlem9  34736
  Copyright terms: Public domain W3C validator