Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem3 Structured version   Visualization version   GIF version

Theorem dnibndlem3 36468
Description: Lemma for dnibnd 36479. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem3.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem3.2 (𝜑𝐴 ∈ ℝ)
dnibndlem3.3 (𝜑𝐵 ∈ ℝ)
dnibndlem3.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem3 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))

Proof of Theorem dnibndlem3
StepHypRef Expression
1 dnibndlem3.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21recnd 11202 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3 halfre 12395 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
51, 4jca 511 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
6 readdcl 11151 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
8 reflcl 13758 . . . . . . . . 9 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
109recnd 11202 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
11 halfcn 12396 . . . . . . . 8 (1 / 2) ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
1310, 12subcld 11533 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
14 dnibndlem3.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1514recnd 11202 . . . . . 6 (𝜑𝐴 ∈ ℂ)
162, 13, 153jca 1128 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ))
17 npncan 11443 . . . . 5 ((𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1816, 17syl 17 . . . 4 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1918eqcomd 2735 . . 3 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)))
20 dnibndlem3.4 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
2120oveq1d 7402 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)))
2214, 4jca 511 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
23 readdcl 11151 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
25 reflcl 13758 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2726recnd 11202 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
28 1cnd 11169 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28, 123jca 1128 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ))
30 addsubass 11431 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
3129, 30syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
32 1mhlfehlf 12401 . . . . . . . 8 (1 − (1 / 2)) = (1 / 2)
3332a1i 11 . . . . . . 7 (𝜑 → (1 − (1 / 2)) = (1 / 2))
3433oveq2d 7403 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3521, 31, 343eqtrd 2768 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3635oveq1d 7402 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
3736oveq2d 7403 . . 3 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3819, 37eqtrd 2764 . 2 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3938fveq2d 6862 1 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071  cmin 11405   / cdiv 11835  2c2 12241  cfl 13752  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fl 13754
This theorem is referenced by:  dnibndlem9  36474
  Copyright terms: Public domain W3C validator