Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem3 Structured version   Visualization version   GIF version

Theorem dnibndlem3 33002
Description: Lemma for dnibnd 33013. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem3.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem3.2 (𝜑𝐴 ∈ ℝ)
dnibndlem3.3 (𝜑𝐵 ∈ ℝ)
dnibndlem3.4 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
Assertion
Ref Expression
dnibndlem3 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))

Proof of Theorem dnibndlem3
StepHypRef Expression
1 dnibndlem3.3 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
21recnd 10384 . . . . . 6 (𝜑𝐵 ∈ ℂ)
3 halfre 11571 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
43a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
51, 4jca 509 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
6 readdcl 10334 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐵 + (1 / 2)) ∈ ℝ)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
8 reflcl 12891 . . . . . . . . 9 ((𝐵 + (1 / 2)) ∈ ℝ → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
109recnd 10384 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℂ)
11 halfcn 11572 . . . . . . . 8 (1 / 2) ∈ ℂ
1211a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
1310, 12subcld 10712 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ)
14 dnibndlem3.2 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1514recnd 10384 . . . . . 6 (𝜑𝐴 ∈ ℂ)
162, 13, 153jca 1164 . . . . 5 (𝜑 → (𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ))
17 npncan 10622 . . . . 5 ((𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1816, 17syl 17 . . . 4 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = (𝐵𝐴))
1918eqcomd 2830 . . 3 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)))
20 dnibndlem3.4 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
2120oveq1d 6919 . . . . . 6 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)))
2214, 4jca 509 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ))
23 readdcl 10334 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
25 reflcl 12891 . . . . . . . . . 10 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2726recnd 10384 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
28 1cnd 10350 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
2927, 28, 123jca 1164 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ))
30 addsubass 10611 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
3129, 30syl 17 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))))
32 1mhlfehlf 11576 . . . . . . . 8 (1 − (1 / 2)) = (1 / 2)
3332a1i 11 . . . . . . 7 (𝜑 → (1 − (1 / 2)) = (1 / 2))
3433oveq2d 6920 . . . . . 6 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3521, 31, 343eqtrd 2864 . . . . 5 (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 / 2)))
3635oveq1d 6919 . . . 4 (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴) = (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
3736oveq2d 6920 . . 3 (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) − 𝐴)) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3819, 37eqtrd 2860 . 2 (𝜑 → (𝐵𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))
3938fveq2d 6436 1 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  cmpt 4951  cfv 6122  (class class class)co 6904  cc 10249  cr 10250  1c1 10252   + caddc 10254  cmin 10584   / cdiv 11008  2c2 11405  cfl 12885  abscabs 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-sup 8616  df-inf 8617  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-n0 11618  df-z 11704  df-uz 11968  df-fl 12887
This theorem is referenced by:  dnibndlem9  33008
  Copyright terms: Public domain W3C validator