Proof of Theorem dnibndlem3
Step | Hyp | Ref
| Expression |
1 | | dnibndlem3.3 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | 1 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
3 | | halfre 12117 |
. . . . . . . . . . . 12
⊢ (1 / 2)
∈ ℝ |
4 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
5 | 1, 4 | jca 511 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ℝ ∧ (1 / 2) ∈
ℝ)) |
6 | | readdcl 10885 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ (1 / 2)
∈ ℝ) → (𝐵 +
(1 / 2)) ∈ ℝ) |
7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
8 | | reflcl 13444 |
. . . . . . . . 9
⊢ ((𝐵 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐵 +
(1 / 2))) ∈ ℝ) |
9 | 7, 8 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
10 | 9 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℂ) |
11 | | halfcn 12118 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℂ |
12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
13 | 10, 12 | subcld 11262 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℂ) |
14 | | dnibndlem3.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
15 | 14 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 2, 13, 15 | 3jca 1126 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ ℂ ∧ ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
∈ ℂ ∧ 𝐴
∈ ℂ)) |
17 | | npncan 11172 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧
((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) − 𝐴)) = (𝐵 − 𝐴)) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) − 𝐴)) = (𝐵 − 𝐴)) |
19 | 18 | eqcomd 2744 |
. . 3
⊢ (𝜑 → (𝐵 − 𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) − 𝐴))) |
20 | | dnibndlem3.4 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) =
((⌊‘(𝐴 + (1 /
2))) + 1)) |
21 | 20 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) =
(((⌊‘(𝐴 + (1 /
2))) + 1) − (1 / 2))) |
22 | 14, 4 | jca 511 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ (1 / 2) ∈
ℝ)) |
23 | | readdcl 10885 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ (1 / 2)
∈ ℝ) → (𝐴 +
(1 / 2)) ∈ ℝ) |
24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
25 | | reflcl 13444 |
. . . . . . . . . 10
⊢ ((𝐴 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐴 +
(1 / 2))) ∈ ℝ) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℝ) |
27 | 26 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℂ) |
28 | | 1cnd 10901 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
29 | 27, 28, 12 | 3jca 1126 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ
∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ)) |
30 | | addsubass 11161 |
. . . . . . 7
⊢
(((⌊‘(𝐴
+ (1 / 2))) ∈ ℂ ∧ 1 ∈ ℂ ∧ (1 / 2) ∈ ℂ)
→ (((⌊‘(𝐴
+ (1 / 2))) + 1) − (1 / 2)) = ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 /
2)))) |
31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) − (1 /
2)) = ((⌊‘(𝐴 +
(1 / 2))) + (1 − (1 / 2)))) |
32 | | 1mhlfehlf 12122 |
. . . . . . . 8
⊢ (1
− (1 / 2)) = (1 / 2) |
33 | 32 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1 − (1 / 2)) = (1 /
2)) |
34 | 33 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 − (1 /
2))) = ((⌊‘(𝐴 +
(1 / 2))) + (1 / 2))) |
35 | 21, 31, 34 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)) =
((⌊‘(𝐴 + (1 /
2))) + (1 / 2))) |
36 | 35 | oveq1d 7270 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝐵 + (1 / 2))) − (1 / 2))
− 𝐴) =
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)) |
37 | 36 | oveq2d 7271 |
. . 3
⊢ (𝜑 → ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐵 + (1 /
2))) − (1 / 2)) − 𝐴)) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) |
38 | 19, 37 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐵 − 𝐴) = ((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴))) |
39 | 38 | fveq2d 6760 |
1
⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) +
(((⌊‘(𝐴 + (1 /
2))) + (1 / 2)) − 𝐴)))) |