Proof of Theorem lply1binomsc
Step | Hyp | Ref
| Expression |
1 | | lply1binomsc.s |
. . . . . 6
⊢ 𝑆 = (algSc‘𝑃) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
3 | | crngring 19710 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
4 | | cply1binom.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
5 | 4 | ply1ring 21329 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
6 | 3, 5 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
7 | 6 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝑃 ∈ Ring) |
8 | 4 | ply1lmod 21333 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
9 | 3, 8 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑃 ∈ LMod) |
10 | 9 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝑃 ∈ LMod) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
12 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
13 | 1, 2, 7, 10, 11, 12 | asclf 20996 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)) |
14 | | lply1binomsc.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝑅) |
15 | 4 | ply1sca 21334 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃)) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝑅 = (Scalar‘𝑃)) |
17 | 16 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
18 | 14, 17 | eqtrid 2790 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐾 = (Base‘(Scalar‘𝑃))) |
19 | 18 | feq2d 6570 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (𝑆:𝐾⟶(Base‘𝑃) ↔ 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))) |
20 | 13, 19 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝑆:𝐾⟶(Base‘𝑃)) |
21 | | simp3 1136 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) |
22 | 20, 21 | ffvelrnd 6944 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (𝑆‘𝐴) ∈ (Base‘𝑃)) |
23 | | cply1binom.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
24 | | cply1binom.a |
. . . 4
⊢ + =
(+g‘𝑃) |
25 | | cply1binom.m |
. . . 4
⊢ × =
(.r‘𝑃) |
26 | | cply1binom.t |
. . . 4
⊢ · =
(.g‘𝑃) |
27 | | cply1binom.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑃) |
28 | | cply1binom.e |
. . . 4
⊢ ↑ =
(.g‘𝐺) |
29 | 4, 23, 24, 25, 26, 27, 28, 12 | lply1binom 21387 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ (𝑆‘𝐴) ∈ (Base‘𝑃)) → (𝑁 ↑ (𝑋 + (𝑆‘𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) × (𝑘 ↑ 𝑋)))))) |
30 | 22, 29 | syld3an3 1407 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (𝑁 ↑ (𝑋 + (𝑆‘𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) × (𝑘 ↑ 𝑋)))))) |
31 | 4 | ply1assa 21280 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑃 ∈ AssAlg) |
32 | 31 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝑃 ∈ AssAlg) |
33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ AssAlg) |
34 | | fznn0sub 13217 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈
ℕ0) |
35 | 34 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) |
36 | 15 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing →
(Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
37 | 14, 36 | eqtrid 2790 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝐾 =
(Base‘(Scalar‘𝑃))) |
38 | 37 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → (𝐴 ∈ 𝐾 ↔ 𝐴 ∈ (Base‘(Scalar‘𝑃)))) |
39 | 38 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃))) |
40 | 39 | 3adant2 1129 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃))) |
41 | 40 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘(Scalar‘𝑃))) |
42 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑃) = (1r‘𝑃) |
43 | 12, 42 | ringidcl 19722 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ (Base‘𝑃)) |
44 | 6, 43 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(1r‘𝑃)
∈ (Base‘𝑃)) |
45 | 44 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) →
(1r‘𝑃)
∈ (Base‘𝑃)) |
46 | 45 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (1r‘𝑃) ∈ (Base‘𝑃)) |
47 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
48 | | eqid 2738 |
. . . . . . . . . 10
⊢
(mulGrp‘(Scalar‘𝑃)) = (mulGrp‘(Scalar‘𝑃)) |
49 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.g‘(mulGrp‘(Scalar‘𝑃))) =
(.g‘(mulGrp‘(Scalar‘𝑃))) |
50 | 12, 2, 11, 47, 48, 49, 27, 28 | assamulgscm 21015 |
. . . . . . . . 9
⊢ ((𝑃 ∈ AssAlg ∧ ((𝑁 − 𝑘) ∈ ℕ0 ∧ 𝐴 ∈
(Base‘(Scalar‘𝑃)) ∧ (1r‘𝑃) ∈ (Base‘𝑃))) → ((𝑁 − 𝑘) ↑ (𝐴( ·𝑠
‘𝑃)(1r‘𝑃))) = (((𝑁 − 𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠 ‘𝑃)((𝑁 − 𝑘) ↑ (1r‘𝑃)))) |
51 | 33, 35, 41, 46, 50 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) ↑ (𝐴( ·𝑠
‘𝑃)(1r‘𝑃))) = (((𝑁 − 𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠 ‘𝑃)((𝑁 − 𝑘) ↑ (1r‘𝑃)))) |
52 | | lply1binomsc.e |
. . . . . . . . . . . . . 14
⊢ 𝐸 = (.g‘𝐻) |
53 | | lply1binomsc.h |
. . . . . . . . . . . . . . . 16
⊢ 𝐻 = (mulGrp‘𝑅) |
54 | 15 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) =
(mulGrp‘(Scalar‘𝑃))) |
55 | 53, 54 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ CRing → 𝐻 =
(mulGrp‘(Scalar‘𝑃))) |
56 | 55 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ CRing →
(.g‘𝐻) =
(.g‘(mulGrp‘(Scalar‘𝑃)))) |
57 | 52, 56 | eqtrid 2790 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝐸 =
(.g‘(mulGrp‘(Scalar‘𝑃)))) |
58 | 57 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐸 =
(.g‘(mulGrp‘(Scalar‘𝑃)))) |
59 | 58 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐸 =
(.g‘(mulGrp‘(Scalar‘𝑃)))) |
60 | 59 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) →
(.g‘(mulGrp‘(Scalar‘𝑃))) = 𝐸) |
61 | 60 | oveqd 7272 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴) = ((𝑁 − 𝑘)𝐸𝐴)) |
62 | 27 | ringmgp 19704 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → 𝐺 ∈ Mnd) |
63 | 6, 62 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
64 | 63 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐺 ∈ Mnd) |
65 | 27, 12 | mgpbas 19641 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘𝐺) |
66 | 27, 42 | ringidval 19654 |
. . . . . . . . . . 11
⊢
(1r‘𝑃) = (0g‘𝐺) |
67 | 65, 28, 66 | mulgnn0z 18645 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑁 − 𝑘) ∈ ℕ0) → ((𝑁 − 𝑘) ↑
(1r‘𝑃)) =
(1r‘𝑃)) |
68 | 64, 34, 67 | syl2an 595 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) ↑
(1r‘𝑃)) =
(1r‘𝑃)) |
69 | 61, 68 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁 − 𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠 ‘𝑃)((𝑁 − 𝑘) ↑ (1r‘𝑃))) = (((𝑁 − 𝑘)𝐸𝐴)( ·𝑠 ‘𝑃)(1r‘𝑃))) |
70 | 51, 69 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) ↑ (𝐴( ·𝑠
‘𝑃)(1r‘𝑃))) = (((𝑁 − 𝑘)𝐸𝐴)( ·𝑠
‘𝑃)(1r‘𝑃))) |
71 | 1, 2, 11, 47, 42 | asclval 20994 |
. . . . . . . . 9
⊢ (𝐴 ∈
(Base‘(Scalar‘𝑃)) → (𝑆‘𝐴) = (𝐴( ·𝑠
‘𝑃)(1r‘𝑃))) |
72 | 41, 71 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘𝐴) = (𝐴( ·𝑠
‘𝑃)(1r‘𝑃))) |
73 | 72 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) = ((𝑁 − 𝑘) ↑ (𝐴( ·𝑠
‘𝑃)(1r‘𝑃)))) |
74 | 53 | ringmgp 19704 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 𝐻 ∈ Mnd) |
75 | 3, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝐻 ∈ Mnd) |
76 | 75 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐻 ∈ Mnd) |
77 | 76 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐻 ∈ Mnd) |
78 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) |
79 | 53, 14 | mgpbas 19641 |
. . . . . . . . . . . . 13
⊢ 𝐾 = (Base‘𝐻) |
80 | 78, 79 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ (Base‘𝐻)) |
81 | 80 | 3adant2 1129 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ (Base‘𝐻)) |
82 | 81 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘𝐻)) |
83 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝐻) =
(Base‘𝐻) |
84 | 83, 52 | mulgnn0cl 18635 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ Mnd ∧ (𝑁 − 𝑘) ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐻)) → ((𝑁 − 𝑘)𝐸𝐴) ∈ (Base‘𝐻)) |
85 | 77, 35, 82, 84 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘)𝐸𝐴) ∈ (Base‘𝐻)) |
86 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 = (Scalar‘𝑃)) |
87 | 86 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Scalar‘𝑃) = 𝑅) |
88 | 87 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
89 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
90 | 53, 89 | mgpbas 19641 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝐻) |
91 | 88, 90 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻)) |
92 | 85, 91 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃))) |
93 | 1, 2, 11, 47, 42 | asclval 20994 |
. . . . . . . 8
⊢ (((𝑁 − 𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)) → (𝑆‘((𝑁 − 𝑘)𝐸𝐴)) = (((𝑁 − 𝑘)𝐸𝐴)( ·𝑠
‘𝑃)(1r‘𝑃))) |
94 | 92, 93 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘((𝑁 − 𝑘)𝐸𝐴)) = (((𝑁 − 𝑘)𝐸𝐴)( ·𝑠
‘𝑃)(1r‘𝑃))) |
95 | 70, 73, 94 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) = (𝑆‘((𝑁 − 𝑘)𝐸𝐴))) |
96 | 95 | oveq1d 7270 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) × (𝑘 ↑ 𝑋)) = ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋))) |
97 | 96 | oveq2d 7271 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) × (𝑘 ↑ 𝑋))) = ((𝑁C𝑘) · ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋)))) |
98 | 97 | mpteq2dva 5170 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) × (𝑘 ↑ 𝑋)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋))))) |
99 | 98 | oveq2d 7271 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ (𝑆‘𝐴)) × (𝑘 ↑ 𝑋))))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋)))))) |
100 | 30, 99 | eqtrd 2778 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈ 𝐾) → (𝑁 ↑ (𝑋 + (𝑆‘𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋)))))) |