Step | Hyp | Ref
| Expression |
1 | | lply1binomsc.s |
. . . . . 6
β’ π = (algScβπ) |
2 | | eqid 2732 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
3 | | crngring 20061 |
. . . . . . . 8
β’ (π
β CRing β π
β Ring) |
4 | | cply1binom.p |
. . . . . . . . 9
β’ π = (Poly1βπ
) |
5 | 4 | ply1ring 21761 |
. . . . . . . 8
β’ (π
β Ring β π β Ring) |
6 | 3, 5 | syl 17 |
. . . . . . 7
β’ (π
β CRing β π β Ring) |
7 | 6 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π β Ring) |
8 | 4 | ply1lmod 21765 |
. . . . . . . 8
β’ (π
β Ring β π β LMod) |
9 | 3, 8 | syl 17 |
. . . . . . 7
β’ (π
β CRing β π β LMod) |
10 | 9 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π β LMod) |
11 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
12 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
13 | 1, 2, 7, 10, 11, 12 | asclf 21427 |
. . . . 5
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π:(Baseβ(Scalarβπ))βΆ(Baseβπ)) |
14 | | lply1binomsc.k |
. . . . . . 7
β’ πΎ = (Baseβπ
) |
15 | 4 | ply1sca 21766 |
. . . . . . . . 9
β’ (π
β CRing β π
= (Scalarβπ)) |
16 | 15 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π
= (Scalarβπ)) |
17 | 16 | fveq2d 6892 |
. . . . . . 7
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
18 | 14, 17 | eqtrid 2784 |
. . . . . 6
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β πΎ = (Baseβ(Scalarβπ))) |
19 | 18 | feq2d 6700 |
. . . . 5
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (π:πΎβΆ(Baseβπ) β π:(Baseβ(Scalarβπ))βΆ(Baseβπ))) |
20 | 13, 19 | mpbird 256 |
. . . 4
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π:πΎβΆ(Baseβπ)) |
21 | | simp3 1138 |
. . . 4
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π΄ β πΎ) |
22 | 20, 21 | ffvelcdmd 7084 |
. . 3
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (πβπ΄) β (Baseβπ)) |
23 | | cply1binom.x |
. . . 4
β’ π = (var1βπ
) |
24 | | cply1binom.a |
. . . 4
β’ + =
(+gβπ) |
25 | | cply1binom.m |
. . . 4
β’ Γ =
(.rβπ) |
26 | | cply1binom.t |
. . . 4
β’ Β· =
(.gβπ) |
27 | | cply1binom.g |
. . . 4
β’ πΊ = (mulGrpβπ) |
28 | | cply1binom.e |
. . . 4
β’ β =
(.gβπΊ) |
29 | 4, 23, 24, 25, 26, 27, 28, 12 | lply1binom 21821 |
. . 3
β’ ((π
β CRing β§ π β β0
β§ (πβπ΄) β (Baseβπ)) β (π β (π + (πβπ΄))) = (π Ξ£g (π β (0...π) β¦ ((πCπ) Β· (((π β π) β (πβπ΄)) Γ (π β π)))))) |
30 | 22, 29 | syld3an3 1409 |
. 2
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (π β (π + (πβπ΄))) = (π Ξ£g (π β (0...π) β¦ ((πCπ) Β· (((π β π) β (πβπ΄)) Γ (π β π)))))) |
31 | 4 | ply1assa 21714 |
. . . . . . . . . . 11
β’ (π
β CRing β π β AssAlg) |
32 | 31 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π β AssAlg) |
33 | 32 | adantr 481 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β π β AssAlg) |
34 | | fznn0sub 13529 |
. . . . . . . . . 10
β’ (π β (0...π) β (π β π) β
β0) |
35 | 34 | adantl 482 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (π β π) β
β0) |
36 | 15 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (π
β CRing β
(Baseβπ
) =
(Baseβ(Scalarβπ))) |
37 | 14, 36 | eqtrid 2784 |
. . . . . . . . . . . . 13
β’ (π
β CRing β πΎ =
(Baseβ(Scalarβπ))) |
38 | 37 | eleq2d 2819 |
. . . . . . . . . . . 12
β’ (π
β CRing β (π΄ β πΎ β π΄ β (Baseβ(Scalarβπ)))) |
39 | 38 | biimpa 477 |
. . . . . . . . . . 11
β’ ((π
β CRing β§ π΄ β πΎ) β π΄ β (Baseβ(Scalarβπ))) |
40 | 39 | 3adant2 1131 |
. . . . . . . . . 10
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π΄ β (Baseβ(Scalarβπ))) |
41 | 40 | adantr 481 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β π΄ β (Baseβ(Scalarβπ))) |
42 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(1rβπ) = (1rβπ) |
43 | 12, 42 | ringidcl 20076 |
. . . . . . . . . . . 12
β’ (π β Ring β
(1rβπ)
β (Baseβπ)) |
44 | 6, 43 | syl 17 |
. . . . . . . . . . 11
β’ (π
β CRing β
(1rβπ)
β (Baseβπ)) |
45 | 44 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β
(1rβπ)
β (Baseβπ)) |
46 | 45 | adantr 481 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (1rβπ) β (Baseβπ)) |
47 | | eqid 2732 |
. . . . . . . . . 10
β’ (
Β·π βπ) = ( Β·π
βπ) |
48 | | eqid 2732 |
. . . . . . . . . 10
β’
(mulGrpβ(Scalarβπ)) = (mulGrpβ(Scalarβπ)) |
49 | | eqid 2732 |
. . . . . . . . . 10
β’
(.gβ(mulGrpβ(Scalarβπ))) =
(.gβ(mulGrpβ(Scalarβπ))) |
50 | 12, 2, 11, 47, 48, 49, 27, 28 | assamulgscm 21446 |
. . . . . . . . 9
β’ ((π β AssAlg β§ ((π β π) β β0 β§ π΄ β
(Baseβ(Scalarβπ)) β§ (1rβπ) β (Baseβπ))) β ((π β π) β (π΄( Β·π
βπ)(1rβπ))) = (((π β π)(.gβ(mulGrpβ(Scalarβπ)))π΄)( Β·π βπ)((π β π) β (1rβπ)))) |
51 | 33, 35, 41, 46, 50 | syl13anc 1372 |
. . . . . . . 8
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π) β (π΄( Β·π
βπ)(1rβπ))) = (((π β π)(.gβ(mulGrpβ(Scalarβπ)))π΄)( Β·π βπ)((π β π) β (1rβπ)))) |
52 | | lply1binomsc.e |
. . . . . . . . . . . . . 14
β’ πΈ = (.gβπ») |
53 | | lply1binomsc.h |
. . . . . . . . . . . . . . . 16
β’ π» = (mulGrpβπ
) |
54 | 15 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ (π
β CRing β
(mulGrpβπ
) =
(mulGrpβ(Scalarβπ))) |
55 | 53, 54 | eqtrid 2784 |
. . . . . . . . . . . . . . 15
β’ (π
β CRing β π» =
(mulGrpβ(Scalarβπ))) |
56 | 55 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (π
β CRing β
(.gβπ») =
(.gβ(mulGrpβ(Scalarβπ)))) |
57 | 52, 56 | eqtrid 2784 |
. . . . . . . . . . . . 13
β’ (π
β CRing β πΈ =
(.gβ(mulGrpβ(Scalarβπ)))) |
58 | 57 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β πΈ =
(.gβ(mulGrpβ(Scalarβπ)))) |
59 | 58 | adantr 481 |
. . . . . . . . . . 11
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β πΈ =
(.gβ(mulGrpβ(Scalarβπ)))) |
60 | 59 | eqcomd 2738 |
. . . . . . . . . 10
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β
(.gβ(mulGrpβ(Scalarβπ))) = πΈ) |
61 | 60 | oveqd 7422 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π)(.gβ(mulGrpβ(Scalarβπ)))π΄) = ((π β π)πΈπ΄)) |
62 | 27 | ringmgp 20055 |
. . . . . . . . . . . 12
β’ (π β Ring β πΊ β Mnd) |
63 | 6, 62 | syl 17 |
. . . . . . . . . . 11
β’ (π
β CRing β πΊ β Mnd) |
64 | 63 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β πΊ β Mnd) |
65 | 27, 12 | mgpbas 19987 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(BaseβπΊ) |
66 | 27, 42 | ringidval 20000 |
. . . . . . . . . . 11
β’
(1rβπ) = (0gβπΊ) |
67 | 65, 28, 66 | mulgnn0z 18975 |
. . . . . . . . . 10
β’ ((πΊ β Mnd β§ (π β π) β β0) β ((π β π) β
(1rβπ)) =
(1rβπ)) |
68 | 64, 34, 67 | syl2an 596 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π) β
(1rβπ)) =
(1rβπ)) |
69 | 61, 68 | oveq12d 7423 |
. . . . . . . 8
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (((π β π)(.gβ(mulGrpβ(Scalarβπ)))π΄)( Β·π βπ)((π β π) β (1rβπ))) = (((π β π)πΈπ΄)( Β·π βπ)(1rβπ))) |
70 | 51, 69 | eqtrd 2772 |
. . . . . . 7
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π) β (π΄( Β·π
βπ)(1rβπ))) = (((π β π)πΈπ΄)( Β·π
βπ)(1rβπ))) |
71 | 1, 2, 11, 47, 42 | asclval 21425 |
. . . . . . . . 9
β’ (π΄ β
(Baseβ(Scalarβπ)) β (πβπ΄) = (π΄( Β·π
βπ)(1rβπ))) |
72 | 41, 71 | syl 17 |
. . . . . . . 8
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (πβπ΄) = (π΄( Β·π
βπ)(1rβπ))) |
73 | 72 | oveq2d 7421 |
. . . . . . 7
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π) β (πβπ΄)) = ((π β π) β (π΄( Β·π
βπ)(1rβπ)))) |
74 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ») =
(Baseβπ») |
75 | 53 | ringmgp 20055 |
. . . . . . . . . . . . 13
β’ (π
β Ring β π» β Mnd) |
76 | 3, 75 | syl 17 |
. . . . . . . . . . . 12
β’ (π
β CRing β π» β Mnd) |
77 | 76 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π» β Mnd) |
78 | 77 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β π» β Mnd) |
79 | | simpr 485 |
. . . . . . . . . . . . 13
β’ ((π
β CRing β§ π΄ β πΎ) β π΄ β πΎ) |
80 | 53, 14 | mgpbas 19987 |
. . . . . . . . . . . . 13
β’ πΎ = (Baseβπ») |
81 | 79, 80 | eleqtrdi 2843 |
. . . . . . . . . . . 12
β’ ((π
β CRing β§ π΄ β πΎ) β π΄ β (Baseβπ»)) |
82 | 81 | 3adant2 1131 |
. . . . . . . . . . 11
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β π΄ β (Baseβπ»)) |
83 | 82 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β π΄ β (Baseβπ»)) |
84 | 74, 52, 78, 35, 83 | mulgnn0cld 18969 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π)πΈπ΄) β (Baseβπ»)) |
85 | 16 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β π
= (Scalarβπ)) |
86 | 85 | eqcomd 2738 |
. . . . . . . . . . 11
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (Scalarβπ) = π
) |
87 | 86 | fveq2d 6892 |
. . . . . . . . . 10
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (Baseβ(Scalarβπ)) = (Baseβπ
)) |
88 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ
) =
(Baseβπ
) |
89 | 53, 88 | mgpbas 19987 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβπ») |
90 | 87, 89 | eqtrdi 2788 |
. . . . . . . . 9
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (Baseβ(Scalarβπ)) = (Baseβπ»)) |
91 | 84, 90 | eleqtrrd 2836 |
. . . . . . . 8
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π)πΈπ΄) β (Baseβ(Scalarβπ))) |
92 | 1, 2, 11, 47, 42 | asclval 21425 |
. . . . . . . 8
β’ (((π β π)πΈπ΄) β (Baseβ(Scalarβπ)) β (πβ((π β π)πΈπ΄)) = (((π β π)πΈπ΄)( Β·π
βπ)(1rβπ))) |
93 | 91, 92 | syl 17 |
. . . . . . 7
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (πβ((π β π)πΈπ΄)) = (((π β π)πΈπ΄)( Β·π
βπ)(1rβπ))) |
94 | 70, 73, 93 | 3eqtr4d 2782 |
. . . . . 6
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((π β π) β (πβπ΄)) = (πβ((π β π)πΈπ΄))) |
95 | 94 | oveq1d 7420 |
. . . . 5
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β (((π β π) β (πβπ΄)) Γ (π β π)) = ((πβ((π β π)πΈπ΄)) Γ (π β π))) |
96 | 95 | oveq2d 7421 |
. . . 4
β’ (((π
β CRing β§ π β β0
β§ π΄ β πΎ) β§ π β (0...π)) β ((πCπ) Β· (((π β π) β (πβπ΄)) Γ (π β π))) = ((πCπ) Β· ((πβ((π β π)πΈπ΄)) Γ (π β π)))) |
97 | 96 | mpteq2dva 5247 |
. . 3
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (π β (0...π) β¦ ((πCπ) Β· (((π β π) β (πβπ΄)) Γ (π β π)))) = (π β (0...π) β¦ ((πCπ) Β· ((πβ((π β π)πΈπ΄)) Γ (π β π))))) |
98 | 97 | oveq2d 7421 |
. 2
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (π Ξ£g (π β (0...π) β¦ ((πCπ) Β· (((π β π) β (πβπ΄)) Γ (π β π))))) = (π Ξ£g (π β (0...π) β¦ ((πCπ) Β· ((πβ((π β π)πΈπ΄)) Γ (π β π)))))) |
99 | 30, 98 | eqtrd 2772 |
1
β’ ((π
β CRing β§ π β β0
β§ π΄ β πΎ) β (π β (π + (πβπ΄))) = (π Ξ£g (π β (0...π) β¦ ((πCπ) Β· ((πβ((π β π)πΈπ΄)) Γ (π β π)))))) |