MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binomsc Structured version   Visualization version   GIF version

Theorem lply1binomsc 21032
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
lply1binomsc.k 𝐾 = (Base‘𝑅)
lply1binomsc.s 𝑆 = (algSc‘𝑃)
lply1binomsc.h 𝐻 = (mulGrp‘𝑅)
lply1binomsc.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
lply1binomsc ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)

Proof of Theorem lply1binomsc
StepHypRef Expression
1 lply1binomsc.s . . . . . 6 𝑆 = (algSc‘𝑃)
2 eqid 2759 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
3 crngring 19378 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 cply1binom.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
54ply1ring 20973 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
63, 5syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
763ad2ant1 1131 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ Ring)
84ply1lmod 20977 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
1093ad2ant1 1131 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ LMod)
11 eqid 2759 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
12 eqid 2759 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
131, 2, 7, 10, 11, 12asclf 20645 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
14 lply1binomsc.k . . . . . . 7 𝐾 = (Base‘𝑅)
154ply1sca 20978 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
16153ad2ant1 1131 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑅 = (Scalar‘𝑃))
1716fveq2d 6663 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1814, 17syl5eq 2806 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐾 = (Base‘(Scalar‘𝑃)))
1918feq2d 6485 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆:𝐾⟶(Base‘𝑃) ↔ 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)))
2013, 19mpbird 260 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:𝐾⟶(Base‘𝑃))
21 simp3 1136 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
2220, 21ffvelrnd 6844 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆𝐴) ∈ (Base‘𝑃))
23 cply1binom.x . . . 4 𝑋 = (var1𝑅)
24 cply1binom.a . . . 4 + = (+g𝑃)
25 cply1binom.m . . . 4 × = (.r𝑃)
26 cply1binom.t . . . 4 · = (.g𝑃)
27 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
28 cply1binom.e . . . 4 = (.g𝐺)
294, 23, 24, 25, 26, 27, 28, 12lply1binom 21031 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ (𝑆𝐴) ∈ (Base‘𝑃)) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
3022, 29syld3an3 1407 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
314ply1assa 20924 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
32313ad2ant1 1131 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ AssAlg)
3332adantr 485 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ AssAlg)
34 fznn0sub 12989 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
3534adantl 486 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
3615fveq2d 6663 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3714, 36syl5eq 2806 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐾 = (Base‘(Scalar‘𝑃)))
3837eleq2d 2838 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐴𝐾𝐴 ∈ (Base‘(Scalar‘𝑃))))
3938biimpa 481 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
40393adant2 1129 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
4140adantr 485 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
42 eqid 2759 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
4312, 42ringidcl 19390 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
446, 43syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → (1r𝑃) ∈ (Base‘𝑃))
45443ad2ant1 1131 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (1r𝑃) ∈ (Base‘𝑃))
4645adantr 485 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (1r𝑃) ∈ (Base‘𝑃))
47 eqid 2759 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2759 . . . . . . . . . 10 (mulGrp‘(Scalar‘𝑃)) = (mulGrp‘(Scalar‘𝑃))
49 eqid 2759 . . . . . . . . . 10 (.g‘(mulGrp‘(Scalar‘𝑃))) = (.g‘(mulGrp‘(Scalar‘𝑃)))
5012, 2, 11, 47, 48, 49, 27, 28assamulgscm 20665 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ ((𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑃)) ∧ (1r𝑃) ∈ (Base‘𝑃))) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
5133, 35, 41, 46, 50syl13anc 1370 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
52 lply1binomsc.e . . . . . . . . . . . . . 14 𝐸 = (.g𝐻)
53 lply1binomsc.h . . . . . . . . . . . . . . . 16 𝐻 = (mulGrp‘𝑅)
5415fveq2d 6663 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (mulGrp‘𝑅) = (mulGrp‘(Scalar‘𝑃)))
5553, 54syl5eq 2806 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝐻 = (mulGrp‘(Scalar‘𝑃)))
5655fveq2d 6663 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (.g𝐻) = (.g‘(mulGrp‘(Scalar‘𝑃))))
5752, 56syl5eq 2806 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
58573ad2ant1 1131 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
5958adantr 485 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
6059eqcomd 2765 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (.g‘(mulGrp‘(Scalar‘𝑃))) = 𝐸)
6160oveqd 7168 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴) = ((𝑁𝑘)𝐸𝐴))
6227ringmgp 19372 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
636, 62syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
64633ad2ant1 1131 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐺 ∈ Mnd)
6527, 12mgpbas 19314 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝐺)
6627, 42ringidval 19322 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
6765, 28, 66mulgnn0z 18322 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6864, 34, 67syl2an 599 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6961, 68oveq12d 7169 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
7051, 69eqtrd 2794 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
711, 2, 11, 47, 42asclval 20643 . . . . . . . . 9 (𝐴 ∈ (Base‘(Scalar‘𝑃)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7241, 71syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7372oveq2d 7167 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))))
7453ringmgp 19372 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
753, 74syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝐻 ∈ Mnd)
76753ad2ant1 1131 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐻 ∈ Mnd)
7776adantr 485 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐻 ∈ Mnd)
78 simpr 489 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴𝐾)
7953, 14mgpbas 19314 . . . . . . . . . . . . 13 𝐾 = (Base‘𝐻)
8078, 79eleqtrdi 2863 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
81803adant2 1129 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
8281adantr 485 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘𝐻))
83 eqid 2759 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
8483, 52mulgnn0cl 18312 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘𝐻)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8577, 35, 82, 84syl3anc 1369 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8616adantr 485 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 = (Scalar‘𝑃))
8786eqcomd 2765 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Scalar‘𝑃) = 𝑅)
8887fveq2d 6663 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
89 eqid 2759 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
9053, 89mgpbas 19314 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝐻)
9188, 90eqtrdi 2810 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9285, 91eleqtrrd 2856 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)))
931, 2, 11, 47, 42asclval 20643 . . . . . . . 8 (((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9492, 93syl 17 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9570, 73, 943eqtr4d 2804 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = (𝑆‘((𝑁𝑘)𝐸𝐴)))
9695oveq1d 7166 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)) = ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))
9796oveq2d 7167 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))) = ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))
9897mpteq2dva 5128 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))))
9998oveq2d 7167 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
10030, 99eqtrd 2794 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  cmpt 5113  wf 6332  cfv 6336  (class class class)co 7151  0cc0 10576  cmin 10909  0cn0 11935  ...cfz 12940  Ccbc 13713  Basecbs 16542  +gcplusg 16624  .rcmulr 16625  Scalarcsca 16627   ·𝑠 cvsca 16628   Σg cgsu 16773  Mndcmnd 17978  .gcmg 18292  mulGrpcmgp 19308  1rcur 19320  Ringcrg 19366  CRingccrg 19367  LModclmod 19703  AssAlgcasa 20616  algSccascl 20618  var1cv1 20901  Poly1cpl1 20902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-ofr 7407  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-rp 12432  df-fz 12941  df-fzo 13084  df-seq 13420  df-fac 13685  df-bc 13714  df-hash 13742  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-sca 16640  df-vsca 16641  df-tset 16643  df-ple 16644  df-0g 16774  df-gsum 16775  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-mhm 18023  df-submnd 18024  df-grp 18173  df-minusg 18174  df-sbg 18175  df-mulg 18293  df-subg 18344  df-ghm 18424  df-cntz 18515  df-cmn 18976  df-abl 18977  df-mgp 19309  df-ur 19321  df-srg 19325  df-ring 19368  df-cring 19369  df-subrg 19602  df-lmod 19705  df-lss 19773  df-assa 20619  df-ascl 20621  df-psr 20672  df-mvr 20673  df-mpl 20674  df-opsr 20676  df-psr1 20905  df-vr1 20906  df-ply1 20907
This theorem is referenced by:  chpscmatgsumbin  21545
  Copyright terms: Public domain W3C validator