MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binomsc Structured version   Visualization version   GIF version

Theorem lply1binomsc 22226
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
lply1binomsc.k 𝐾 = (Base‘𝑅)
lply1binomsc.s 𝑆 = (algSc‘𝑃)
lply1binomsc.h 𝐻 = (mulGrp‘𝑅)
lply1binomsc.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
lply1binomsc ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)

Proof of Theorem lply1binomsc
StepHypRef Expression
1 lply1binomsc.s . . . . . 6 𝑆 = (algSc‘𝑃)
2 eqid 2731 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
3 crngring 20163 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 cply1binom.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
54ply1ring 22160 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
63, 5syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
763ad2ant1 1133 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ Ring)
84ply1lmod 22164 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
1093ad2ant1 1133 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ LMod)
11 eqid 2731 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
12 eqid 2731 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
131, 2, 7, 10, 11, 12asclf 21819 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
14 lply1binomsc.k . . . . . . 7 𝐾 = (Base‘𝑅)
154ply1sca 22165 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
16153ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑅 = (Scalar‘𝑃))
1716fveq2d 6826 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1814, 17eqtrid 2778 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐾 = (Base‘(Scalar‘𝑃)))
1918feq2d 6635 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆:𝐾⟶(Base‘𝑃) ↔ 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)))
2013, 19mpbird 257 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:𝐾⟶(Base‘𝑃))
21 simp3 1138 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
2220, 21ffvelcdmd 7018 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆𝐴) ∈ (Base‘𝑃))
23 cply1binom.x . . . 4 𝑋 = (var1𝑅)
24 cply1binom.a . . . 4 + = (+g𝑃)
25 cply1binom.m . . . 4 × = (.r𝑃)
26 cply1binom.t . . . 4 · = (.g𝑃)
27 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
28 cply1binom.e . . . 4 = (.g𝐺)
294, 23, 24, 25, 26, 27, 28, 12lply1binom 22225 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ (𝑆𝐴) ∈ (Base‘𝑃)) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
3022, 29syld3an3 1411 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
314ply1assa 22112 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
32313ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ AssAlg)
3332adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ AssAlg)
34 fznn0sub 13456 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
3534adantl 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
3615fveq2d 6826 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3714, 36eqtrid 2778 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐾 = (Base‘(Scalar‘𝑃)))
3837eleq2d 2817 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐴𝐾𝐴 ∈ (Base‘(Scalar‘𝑃))))
3938biimpa 476 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
40393adant2 1131 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
4140adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
42 eqid 2731 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
4312, 42ringidcl 20183 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
446, 43syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → (1r𝑃) ∈ (Base‘𝑃))
45443ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (1r𝑃) ∈ (Base‘𝑃))
4645adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (1r𝑃) ∈ (Base‘𝑃))
47 eqid 2731 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2731 . . . . . . . . . 10 (mulGrp‘(Scalar‘𝑃)) = (mulGrp‘(Scalar‘𝑃))
49 eqid 2731 . . . . . . . . . 10 (.g‘(mulGrp‘(Scalar‘𝑃))) = (.g‘(mulGrp‘(Scalar‘𝑃)))
5012, 2, 11, 47, 48, 49, 27, 28assamulgscm 21838 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ ((𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑃)) ∧ (1r𝑃) ∈ (Base‘𝑃))) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
5133, 35, 41, 46, 50syl13anc 1374 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
52 lply1binomsc.e . . . . . . . . . . . . . 14 𝐸 = (.g𝐻)
53 lply1binomsc.h . . . . . . . . . . . . . . . 16 𝐻 = (mulGrp‘𝑅)
5415fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (mulGrp‘𝑅) = (mulGrp‘(Scalar‘𝑃)))
5553, 54eqtrid 2778 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝐻 = (mulGrp‘(Scalar‘𝑃)))
5655fveq2d 6826 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (.g𝐻) = (.g‘(mulGrp‘(Scalar‘𝑃))))
5752, 56eqtrid 2778 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
58573ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
5958adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
6059eqcomd 2737 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (.g‘(mulGrp‘(Scalar‘𝑃))) = 𝐸)
6160oveqd 7363 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴) = ((𝑁𝑘)𝐸𝐴))
6227ringmgp 20157 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
636, 62syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
64633ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐺 ∈ Mnd)
6527, 12mgpbas 20063 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝐺)
6627, 42ringidval 20101 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
6765, 28, 66mulgnn0z 19014 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6864, 34, 67syl2an 596 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6961, 68oveq12d 7364 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
7051, 69eqtrd 2766 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
711, 2, 11, 47, 42asclval 21817 . . . . . . . . 9 (𝐴 ∈ (Base‘(Scalar‘𝑃)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7241, 71syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7372oveq2d 7362 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))))
74 eqid 2731 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
7553ringmgp 20157 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
763, 75syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝐻 ∈ Mnd)
77763ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐻 ∈ Mnd)
7877adantr 480 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐻 ∈ Mnd)
79 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴𝐾)
8053, 14mgpbas 20063 . . . . . . . . . . . . 13 𝐾 = (Base‘𝐻)
8179, 80eleqtrdi 2841 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
82813adant2 1131 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
8382adantr 480 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘𝐻))
8474, 52, 78, 35, 83mulgnn0cld 19008 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8516adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 = (Scalar‘𝑃))
8685eqcomd 2737 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Scalar‘𝑃) = 𝑅)
8786fveq2d 6826 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
88 eqid 2731 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
8953, 88mgpbas 20063 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝐻)
9087, 89eqtrdi 2782 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9184, 90eleqtrrd 2834 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)))
921, 2, 11, 47, 42asclval 21817 . . . . . . . 8 (((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9391, 92syl 17 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9470, 73, 933eqtr4d 2776 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = (𝑆‘((𝑁𝑘)𝐸𝐴)))
9594oveq1d 7361 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)) = ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))
9695oveq2d 7362 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))) = ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))
9796mpteq2dva 5182 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))))
9897oveq2d 7362 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
9930, 98eqtrd 2766 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  cmin 11344  0cn0 12381  ...cfz 13407  Ccbc 14209  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165   Σg cgsu 17344  Mndcmnd 18642  .gcmg 18980  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151  CRingccrg 20152  LModclmod 20793  AssAlgcasa 21787  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-fac 14181  df-bc 14210  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-assa 21790  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094
This theorem is referenced by:  chpscmatgsumbin  22759
  Copyright terms: Public domain W3C validator