MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lply1binomsc Structured version   Visualization version   GIF version

Theorem lply1binomsc 22198
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝑋𝑘)). (Contributed by AV, 25-Aug-2019.)
Hypotheses
Ref Expression
cply1binom.p 𝑃 = (Poly1𝑅)
cply1binom.x 𝑋 = (var1𝑅)
cply1binom.a + = (+g𝑃)
cply1binom.m × = (.r𝑃)
cply1binom.t · = (.g𝑃)
cply1binom.g 𝐺 = (mulGrp‘𝑃)
cply1binom.e = (.g𝐺)
lply1binomsc.k 𝐾 = (Base‘𝑅)
lply1binomsc.s 𝑆 = (algSc‘𝑃)
lply1binomsc.h 𝐻 = (mulGrp‘𝑅)
lply1binomsc.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
lply1binomsc ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑘,𝑋   × ,𝑘   · ,𝑘   ,𝑘   + ,𝑘   𝑆,𝑘
Allowed substitution hints:   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)

Proof of Theorem lply1binomsc
StepHypRef Expression
1 lply1binomsc.s . . . . . 6 𝑆 = (algSc‘𝑃)
2 eqid 2729 . . . . . 6 (Scalar‘𝑃) = (Scalar‘𝑃)
3 crngring 20154 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 cply1binom.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
54ply1ring 22132 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
63, 5syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
763ad2ant1 1133 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ Ring)
84ply1lmod 22136 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
93, 8syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
1093ad2ant1 1133 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ LMod)
11 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
12 eqid 2729 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
131, 2, 7, 10, 11, 12asclf 21791 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃))
14 lply1binomsc.k . . . . . . 7 𝐾 = (Base‘𝑅)
154ply1sca 22137 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
16153ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑅 = (Scalar‘𝑃))
1716fveq2d 6862 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1814, 17eqtrid 2776 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐾 = (Base‘(Scalar‘𝑃)))
1918feq2d 6672 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆:𝐾⟶(Base‘𝑃) ↔ 𝑆:(Base‘(Scalar‘𝑃))⟶(Base‘𝑃)))
2013, 19mpbird 257 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑆:𝐾⟶(Base‘𝑃))
21 simp3 1138 . . . 4 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
2220, 21ffvelcdmd 7057 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑆𝐴) ∈ (Base‘𝑃))
23 cply1binom.x . . . 4 𝑋 = (var1𝑅)
24 cply1binom.a . . . 4 + = (+g𝑃)
25 cply1binom.m . . . 4 × = (.r𝑃)
26 cply1binom.t . . . 4 · = (.g𝑃)
27 cply1binom.g . . . 4 𝐺 = (mulGrp‘𝑃)
28 cply1binom.e . . . 4 = (.g𝐺)
294, 23, 24, 25, 26, 27, 28, 12lply1binom 22197 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ (𝑆𝐴) ∈ (Base‘𝑃)) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
3022, 29syld3an3 1411 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))))
314ply1assa 22084 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
32313ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝑃 ∈ AssAlg)
3332adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ AssAlg)
34 fznn0sub 13517 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
3534adantl 481 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
3615fveq2d 6862 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
3714, 36eqtrid 2776 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐾 = (Base‘(Scalar‘𝑃)))
3837eleq2d 2814 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐴𝐾𝐴 ∈ (Base‘(Scalar‘𝑃))))
3938biimpa 476 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
40393adant2 1131 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
4140adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘(Scalar‘𝑃)))
42 eqid 2729 . . . . . . . . . . . . 13 (1r𝑃) = (1r𝑃)
4312, 42ringidcl 20174 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
446, 43syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → (1r𝑃) ∈ (Base‘𝑃))
45443ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (1r𝑃) ∈ (Base‘𝑃))
4645adantr 480 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (1r𝑃) ∈ (Base‘𝑃))
47 eqid 2729 . . . . . . . . . 10 ( ·𝑠𝑃) = ( ·𝑠𝑃)
48 eqid 2729 . . . . . . . . . 10 (mulGrp‘(Scalar‘𝑃)) = (mulGrp‘(Scalar‘𝑃))
49 eqid 2729 . . . . . . . . . 10 (.g‘(mulGrp‘(Scalar‘𝑃))) = (.g‘(mulGrp‘(Scalar‘𝑃)))
5012, 2, 11, 47, 48, 49, 27, 28assamulgscm 21810 . . . . . . . . 9 ((𝑃 ∈ AssAlg ∧ ((𝑁𝑘) ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑃)) ∧ (1r𝑃) ∈ (Base‘𝑃))) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
5133, 35, 41, 46, 50syl13anc 1374 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))))
52 lply1binomsc.e . . . . . . . . . . . . . 14 𝐸 = (.g𝐻)
53 lply1binomsc.h . . . . . . . . . . . . . . . 16 𝐻 = (mulGrp‘𝑅)
5415fveq2d 6862 . . . . . . . . . . . . . . . 16 (𝑅 ∈ CRing → (mulGrp‘𝑅) = (mulGrp‘(Scalar‘𝑃)))
5553, 54eqtrid 2776 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝐻 = (mulGrp‘(Scalar‘𝑃)))
5655fveq2d 6862 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → (.g𝐻) = (.g‘(mulGrp‘(Scalar‘𝑃))))
5752, 56eqtrid 2776 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
58573ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
5958adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐸 = (.g‘(mulGrp‘(Scalar‘𝑃))))
6059eqcomd 2735 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (.g‘(mulGrp‘(Scalar‘𝑃))) = 𝐸)
6160oveqd 7404 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴) = ((𝑁𝑘)𝐸𝐴))
6227ringmgp 20148 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
636, 62syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
64633ad2ant1 1133 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐺 ∈ Mnd)
6527, 12mgpbas 20054 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝐺)
6627, 42ringidval 20092 . . . . . . . . . . 11 (1r𝑃) = (0g𝐺)
6765, 28, 66mulgnn0z 19033 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑁𝑘) ∈ ℕ0) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6864, 34, 67syl2an 596 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (1r𝑃)) = (1r𝑃))
6961, 68oveq12d 7405 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘)(.g‘(mulGrp‘(Scalar‘𝑃)))𝐴)( ·𝑠𝑃)((𝑁𝑘) (1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
7051, 69eqtrd 2764 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
711, 2, 11, 47, 42asclval 21789 . . . . . . . . 9 (𝐴 ∈ (Base‘(Scalar‘𝑃)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7241, 71syl 17 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆𝐴) = (𝐴( ·𝑠𝑃)(1r𝑃)))
7372oveq2d 7403 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = ((𝑁𝑘) (𝐴( ·𝑠𝑃)(1r𝑃))))
74 eqid 2729 . . . . . . . . . 10 (Base‘𝐻) = (Base‘𝐻)
7553ringmgp 20148 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝐻 ∈ Mnd)
763, 75syl 17 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝐻 ∈ Mnd)
77763ad2ant1 1133 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐻 ∈ Mnd)
7877adantr 480 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐻 ∈ Mnd)
79 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴𝐾)
8053, 14mgpbas 20054 . . . . . . . . . . . . 13 𝐾 = (Base‘𝐻)
8179, 80eleqtrdi 2838 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
82813adant2 1131 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → 𝐴 ∈ (Base‘𝐻))
8382adantr 480 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (Base‘𝐻))
8474, 52, 78, 35, 83mulgnn0cld 19027 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘𝐻))
8516adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 = (Scalar‘𝑃))
8685eqcomd 2735 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Scalar‘𝑃) = 𝑅)
8786fveq2d 6862 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
88 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
8953, 88mgpbas 20054 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝐻)
9087, 89eqtrdi 2780 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (Base‘(Scalar‘𝑃)) = (Base‘𝐻))
9184, 90eleqtrrd 2831 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)))
921, 2, 11, 47, 42asclval 21789 . . . . . . . 8 (((𝑁𝑘)𝐸𝐴) ∈ (Base‘(Scalar‘𝑃)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9391, 92syl 17 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (𝑆‘((𝑁𝑘)𝐸𝐴)) = (((𝑁𝑘)𝐸𝐴)( ·𝑠𝑃)(1r𝑃)))
9470, 73, 933eqtr4d 2774 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) (𝑆𝐴)) = (𝑆‘((𝑁𝑘)𝐸𝐴)))
9594oveq1d 7402 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)) = ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))
9695oveq2d 7403 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))) = ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))
9796mpteq2dva 5200 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋)))))
9897oveq2d 7403 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) (𝑆𝐴)) × (𝑘 𝑋))))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
9930, 98eqtrd 2764 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0𝐴𝐾) → (𝑁 (𝑋 + (𝑆𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁𝑘)𝐸𝐴)) × (𝑘 𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  cmin 11405  0cn0 12442  ...cfz 13468  Ccbc 14267  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  LModclmod 20766  AssAlgcasa 21759  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-assa 21762  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066
This theorem is referenced by:  chpscmatgsumbin  22731
  Copyright terms: Public domain W3C validator