Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ascl1 | Structured version Visualization version GIF version |
Description: The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
ascl0.a | ⊢ 𝐴 = (algSc‘𝑊) |
ascl0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ascl0.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ascl0.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
Ref | Expression |
---|---|
ascl1 | ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ascl0.l | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | ascl0.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodring 19761 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Ring) |
5 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2738 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
7 | 5, 6 | ringidcl 19440 | . . . 4 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝐹) ∈ (Base‘𝐹)) |
9 | ascl0.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
10 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
12 | 9, 2, 5, 10, 11 | asclval 20693 | . . 3 ⊢ ((1r‘𝐹) ∈ (Base‘𝐹) → (𝐴‘(1r‘𝐹)) = ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
13 | 8, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
14 | ascl0.r | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
15 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
16 | 15, 11 | ringidcl 19440 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
18 | 15, 2, 10, 6 | lmodvs1 19781 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ (Base‘𝑊)) → ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
19 | 1, 17, 18 | syl2anc 587 | . 2 ⊢ (𝜑 → ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
20 | 13, 19 | eqtrd 2773 | 1 ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 Scalarcsca 16671 ·𝑠 cvsca 16672 1rcur 19370 Ringcrg 19416 LModclmod 19753 algSccascl 20668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-plusg 16681 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mgp 19359 df-ur 19371 df-ring 19418 df-lmod 19755 df-ascl 20671 |
This theorem is referenced by: asclrhm 20704 mhppwdeg 20944 assaascl1 45255 |
Copyright terms: Public domain | W3C validator |