![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1sclrmsm | Structured version Visualization version GIF version |
Description: The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019.) |
Ref | Expression |
---|---|
ply1sclrmsm.k | β’ πΎ = (Baseβπ ) |
ply1sclrmsm.p | β’ π = (Poly1βπ ) |
ply1sclrmsm.b | β’ πΈ = (Baseβπ) |
ply1sclrmsm.x | β’ π = (var1βπ ) |
ply1sclrmsm.s | β’ Β· = ( Β·π βπ) |
ply1sclrmsm.m | β’ Γ = (.rβπ) |
ply1sclrmsm.n | β’ π = (mulGrpβπ) |
ply1sclrmsm.e | β’ β = (.gβπ) |
ply1sclrmsm.a | β’ π΄ = (algScβπ) |
Ref | Expression |
---|---|
ply1sclrmsm | β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β ((π΄βπΉ) Γ π) = (πΉ Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1sclrmsm.k | . . . . . . . 8 β’ πΎ = (Baseβπ ) | |
2 | ply1sclrmsm.p | . . . . . . . . . 10 β’ π = (Poly1βπ ) | |
3 | 2 | ply1sca 21996 | . . . . . . . . 9 β’ (π β Ring β π = (Scalarβπ)) |
4 | 3 | fveq2d 6896 | . . . . . . . 8 β’ (π β Ring β (Baseβπ ) = (Baseβ(Scalarβπ))) |
5 | 1, 4 | eqtrid 2783 | . . . . . . 7 β’ (π β Ring β πΎ = (Baseβ(Scalarβπ))) |
6 | 5 | eleq2d 2818 | . . . . . 6 β’ (π β Ring β (πΉ β πΎ β πΉ β (Baseβ(Scalarβπ)))) |
7 | 6 | biimpa 476 | . . . . 5 β’ ((π β Ring β§ πΉ β πΎ) β πΉ β (Baseβ(Scalarβπ))) |
8 | ply1sclrmsm.a | . . . . . 6 β’ π΄ = (algScβπ) | |
9 | eqid 2731 | . . . . . 6 β’ (Scalarβπ) = (Scalarβπ) | |
10 | eqid 2731 | . . . . . 6 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
11 | ply1sclrmsm.s | . . . . . 6 β’ Β· = ( Β·π βπ) | |
12 | eqid 2731 | . . . . . 6 β’ (1rβπ) = (1rβπ) | |
13 | 8, 9, 10, 11, 12 | asclval 21654 | . . . . 5 β’ (πΉ β (Baseβ(Scalarβπ)) β (π΄βπΉ) = (πΉ Β· (1rβπ))) |
14 | 7, 13 | syl 17 | . . . 4 β’ ((π β Ring β§ πΉ β πΎ) β (π΄βπΉ) = (πΉ Β· (1rβπ))) |
15 | 14 | 3adant3 1131 | . . 3 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β (π΄βπΉ) = (πΉ Β· (1rβπ))) |
16 | 15 | oveq1d 7427 | . 2 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β ((π΄βπΉ) Γ π) = ((πΉ Β· (1rβπ)) Γ π)) |
17 | simp1 1135 | . . 3 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β π β Ring) | |
18 | 1 | eleq2i 2824 | . . . . 5 β’ (πΉ β πΎ β πΉ β (Baseβπ )) |
19 | 18 | biimpi 215 | . . . 4 β’ (πΉ β πΎ β πΉ β (Baseβπ )) |
20 | 19 | 3ad2ant2 1133 | . . 3 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β πΉ β (Baseβπ )) |
21 | 2 | ply1ring 21991 | . . . . 5 β’ (π β Ring β π β Ring) |
22 | ply1sclrmsm.b | . . . . . 6 β’ πΈ = (Baseβπ) | |
23 | 22, 12 | ringidcl 20155 | . . . . 5 β’ (π β Ring β (1rβπ) β πΈ) |
24 | 21, 23 | syl 17 | . . . 4 β’ (π β Ring β (1rβπ) β πΈ) |
25 | 24 | 3ad2ant1 1132 | . . 3 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β (1rβπ) β πΈ) |
26 | simp3 1137 | . . 3 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β π β πΈ) | |
27 | ply1sclrmsm.m | . . . 4 β’ Γ = (.rβπ) | |
28 | eqid 2731 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
29 | 2, 27, 22, 28, 11 | ply1ass23l 21970 | . . 3 β’ ((π β Ring β§ (πΉ β (Baseβπ ) β§ (1rβπ) β πΈ β§ π β πΈ)) β ((πΉ Β· (1rβπ)) Γ π) = (πΉ Β· ((1rβπ) Γ π))) |
30 | 17, 20, 25, 26, 29 | syl13anc 1371 | . 2 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β ((πΉ Β· (1rβπ)) Γ π) = (πΉ Β· ((1rβπ) Γ π))) |
31 | 22, 27, 12 | ringlidm 20158 | . . . . 5 β’ ((π β Ring β§ π β πΈ) β ((1rβπ) Γ π) = π) |
32 | 21, 31 | sylan 579 | . . . 4 β’ ((π β Ring β§ π β πΈ) β ((1rβπ) Γ π) = π) |
33 | 32 | 3adant2 1130 | . . 3 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β ((1rβπ) Γ π) = π) |
34 | 33 | oveq2d 7428 | . 2 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β (πΉ Β· ((1rβπ) Γ π)) = (πΉ Β· π)) |
35 | 16, 30, 34 | 3eqtrd 2775 | 1 β’ ((π β Ring β§ πΉ β πΎ β§ π β πΈ) β ((π΄βπΉ) Γ π) = (πΉ Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βcfv 6544 (class class class)co 7412 Basecbs 17149 .rcmulr 17203 Scalarcsca 17205 Β·π cvsca 17206 .gcmg 18987 mulGrpcmgp 20029 1rcur 20076 Ringcrg 20128 algSccascl 21627 var1cv1 21920 Poly1cpl1 21921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-ofr 7674 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrng 20435 df-subrg 20460 df-ascl 21630 df-psr 21682 df-mpl 21684 df-opsr 21686 df-psr1 21924 df-ply1 21926 |
This theorem is referenced by: coe1sclmulval 47155 |
Copyright terms: Public domain | W3C validator |