![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1sclrmsm | Structured version Visualization version GIF version |
Description: The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019.) |
Ref | Expression |
---|---|
ply1sclrmsm.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1sclrmsm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1sclrmsm.b | ⊢ 𝐸 = (Base‘𝑃) |
ply1sclrmsm.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1sclrmsm.s | ⊢ · = ( ·𝑠 ‘𝑃) |
ply1sclrmsm.m | ⊢ × = (.r‘𝑃) |
ply1sclrmsm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
ply1sclrmsm.e | ⊢ ↑ = (.g‘𝑁) |
ply1sclrmsm.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
ply1sclrmsm | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = (𝐹 · 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1sclrmsm.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑅) | |
2 | ply1sclrmsm.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1sca 20109 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
4 | 3 | fveq2d 6547 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
5 | 1, 4 | syl5eq 2843 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐾 = (Base‘(Scalar‘𝑃))) |
6 | 5 | eleq2d 2868 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐾 ↔ 𝐹 ∈ (Base‘(Scalar‘𝑃)))) |
7 | 6 | biimpa 477 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → 𝐹 ∈ (Base‘(Scalar‘𝑃))) |
8 | ply1sclrmsm.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
9 | eqid 2795 | . . . . . 6 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
10 | eqid 2795 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
11 | ply1sclrmsm.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑃) | |
12 | eqid 2795 | . . . . . 6 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
13 | 8, 9, 10, 11, 12 | asclval 19802 | . . . . 5 ⊢ (𝐹 ∈ (Base‘(Scalar‘𝑃)) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
14 | 7, 13 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
15 | 14 | 3adant3 1125 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → (𝐴‘𝐹) = (𝐹 · (1r‘𝑃))) |
16 | 15 | oveq1d 7036 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = ((𝐹 · (1r‘𝑃)) × 𝑍)) |
17 | simp1 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → 𝑅 ∈ Ring) | |
18 | 1 | eleq2i 2874 | . . . . 5 ⊢ (𝐹 ∈ 𝐾 ↔ 𝐹 ∈ (Base‘𝑅)) |
19 | 18 | biimpi 217 | . . . 4 ⊢ (𝐹 ∈ 𝐾 → 𝐹 ∈ (Base‘𝑅)) |
20 | 19 | 3ad2ant2 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → 𝐹 ∈ (Base‘𝑅)) |
21 | 2 | ply1ring 20104 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
22 | ply1sclrmsm.b | . . . . . 6 ⊢ 𝐸 = (Base‘𝑃) | |
23 | 22, 12 | ringidcl 19013 | . . . . 5 ⊢ (𝑃 ∈ Ring → (1r‘𝑃) ∈ 𝐸) |
24 | 21, 23 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑃) ∈ 𝐸) |
25 | 24 | 3ad2ant1 1126 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → (1r‘𝑃) ∈ 𝐸) |
26 | simp3 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → 𝑍 ∈ 𝐸) | |
27 | ply1sclrmsm.m | . . . 4 ⊢ × = (.r‘𝑃) | |
28 | eqid 2795 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
29 | 2, 27, 22, 28, 11 | ply1ass23l 43943 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ (Base‘𝑅) ∧ (1r‘𝑃) ∈ 𝐸 ∧ 𝑍 ∈ 𝐸)) → ((𝐹 · (1r‘𝑃)) × 𝑍) = (𝐹 · ((1r‘𝑃) × 𝑍))) |
30 | 17, 20, 25, 26, 29 | syl13anc 1365 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐹 · (1r‘𝑃)) × 𝑍) = (𝐹 · ((1r‘𝑃) × 𝑍))) |
31 | 22, 27, 12 | ringlidm 19016 | . . . . 5 ⊢ ((𝑃 ∈ Ring ∧ 𝑍 ∈ 𝐸) → ((1r‘𝑃) × 𝑍) = 𝑍) |
32 | 21, 31 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐸) → ((1r‘𝑃) × 𝑍) = 𝑍) |
33 | 32 | 3adant2 1124 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((1r‘𝑃) × 𝑍) = 𝑍) |
34 | 33 | oveq2d 7037 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → (𝐹 · ((1r‘𝑃) × 𝑍)) = (𝐹 · 𝑍)) |
35 | 16, 30, 34 | 3eqtrd 2835 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = (𝐹 · 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ‘cfv 6230 (class class class)co 7021 Basecbs 16317 .rcmulr 16400 Scalarcsca 16402 ·𝑠 cvsca 16403 .gcmg 17986 mulGrpcmgp 18934 1rcur 18946 Ringcrg 18992 algSccascl 19778 var1cv1 20032 Poly1cpl1 20033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-iin 4832 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-se 5408 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-isom 6239 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-of 7272 df-ofr 7273 df-om 7442 df-1st 7550 df-2nd 7551 df-supp 7687 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-2o 7959 df-oadd 7962 df-er 8144 df-map 8263 df-pm 8264 df-ixp 8316 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-fsupp 8685 df-oi 8825 df-card 9219 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-uz 12099 df-fz 12748 df-fzo 12889 df-seq 13225 df-hash 13546 df-struct 16319 df-ndx 16320 df-slot 16321 df-base 16323 df-sets 16324 df-ress 16325 df-plusg 16412 df-mulr 16413 df-sca 16415 df-vsca 16416 df-tset 16418 df-ple 16419 df-0g 16549 df-gsum 16550 df-mre 16691 df-mrc 16692 df-acs 16694 df-mgm 17686 df-sgrp 17728 df-mnd 17739 df-mhm 17779 df-submnd 17780 df-grp 17869 df-minusg 17870 df-mulg 17987 df-subg 18035 df-ghm 18102 df-cntz 18193 df-cmn 18640 df-abl 18641 df-mgp 18935 df-ur 18947 df-ring 18994 df-subrg 19228 df-ascl 19781 df-psr 19829 df-mpl 19831 df-opsr 19833 df-psr1 20036 df-ply1 20038 |
This theorem is referenced by: coe1sclmulval 43946 |
Copyright terms: Public domain | W3C validator |