| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayhamlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for cayhamlem3 22805. (Contributed by AV, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| cayhamlem2.k | ⊢ 𝐾 = (Base‘𝑅) |
| cayhamlem2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayhamlem2.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayhamlem2.1 | ⊢ 1 = (1r‘𝐴) |
| cayhamlem2.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cayhamlem2.e | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
| cayhamlem2.r | ⊢ · = (.r‘𝐴) |
| Ref | Expression |
|---|---|
| cayhamlem2 | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀)) = ((𝐿 ↑ 𝑀) · ((𝐻‘𝐿) ∗ 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8781 | . . . . . . . 8 ⊢ (𝐻 ∈ (𝐾 ↑m ℕ0) → 𝐻:ℕ0⟶𝐾) | |
| 2 | 1 | ffvelcdmda 7025 | . . . . . . 7 ⊢ ((𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐻‘𝐿) ∈ 𝐾) |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐻‘𝐿) ∈ 𝐾) |
| 4 | cayhamlem2.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | cayhamlem2.a | . . . . . . . . . . . 12 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 6 | 5 | matsca2 22338 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴)) |
| 7 | 6 | 3adant3 1132 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝐴)) |
| 8 | 7 | fveq2d 6834 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
| 9 | 4, 8 | eqtr2id 2781 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝐴)) = 𝐾) |
| 10 | 9 | eleq2d 2819 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐻‘𝐿) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝐻‘𝐿) ∈ 𝐾)) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝐻‘𝐿) ∈ 𝐾)) |
| 12 | 3, 11 | mpbird 257 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐻‘𝐿) ∈ (Base‘(Scalar‘𝐴))) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (algSc‘𝐴) = (algSc‘𝐴) | |
| 14 | eqid 2733 | . . . . . 6 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 15 | eqid 2733 | . . . . . 6 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 16 | cayhamlem2.m | . . . . . 6 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 17 | cayhamlem2.1 | . . . . . 6 ⊢ 1 = (1r‘𝐴) | |
| 18 | 13, 14, 15, 16, 17 | asclval 21821 | . . . . 5 ⊢ ((𝐻‘𝐿) ∈ (Base‘(Scalar‘𝐴)) → ((algSc‘𝐴)‘(𝐻‘𝐿)) = ((𝐻‘𝐿) ∗ 1 )) |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((algSc‘𝐴)‘(𝐻‘𝐿)) = ((𝐻‘𝐿) ∗ 1 )) |
| 20 | 19 | eqcomd 2739 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∗ 1 ) = ((algSc‘𝐴)‘(𝐻‘𝐿))) |
| 21 | 20 | oveq2d 7370 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐿 ↑ 𝑀) · ((𝐻‘𝐿) ∗ 1 )) = ((𝐿 ↑ 𝑀) · ((algSc‘𝐴)‘(𝐻‘𝐿)))) |
| 22 | 5 | matassa 22362 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) |
| 23 | 22 | 3adant3 1132 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ AssAlg) |
| 24 | 23 | adantr 480 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → 𝐴 ∈ AssAlg) |
| 25 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 26 | cayhamlem2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 27 | 25, 26 | mgpbas 20067 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝐴)) |
| 28 | cayhamlem2.e | . . . 4 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
| 29 | crngring 20167 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 30 | 29 | anim2i 617 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 31 | 30 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 32 | 5 | matring 22361 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 33 | 25 | ringmgp 20161 | . . . . . 6 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
| 34 | 31, 32, 33 | 3syl 18 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝐴) ∈ Mnd) |
| 35 | 34 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → (mulGrp‘𝐴) ∈ Mnd) |
| 36 | simprr 772 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → 𝐿 ∈ ℕ0) | |
| 37 | simpl3 1194 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → 𝑀 ∈ 𝐵) | |
| 38 | 27, 28, 35, 36, 37 | mulgnn0cld 19012 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → (𝐿 ↑ 𝑀) ∈ 𝐵) |
| 39 | cayhamlem2.r | . . . 4 ⊢ · = (.r‘𝐴) | |
| 40 | 13, 14, 15, 26, 39, 16 | asclmul2 21828 | . . 3 ⊢ ((𝐴 ∈ AssAlg ∧ (𝐻‘𝐿) ∈ (Base‘(Scalar‘𝐴)) ∧ (𝐿 ↑ 𝑀) ∈ 𝐵) → ((𝐿 ↑ 𝑀) · ((algSc‘𝐴)‘(𝐻‘𝐿))) = ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀))) |
| 41 | 24, 12, 38, 40 | syl3anc 1373 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐿 ↑ 𝑀) · ((algSc‘𝐴)‘(𝐻‘𝐿))) = ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀))) |
| 42 | 21, 41 | eqtr2d 2769 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀)) = ((𝐿 ↑ 𝑀) · ((𝐻‘𝐿) ∗ 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 Fincfn 8877 ℕ0cn0 12390 Basecbs 17124 .rcmulr 17166 Scalarcsca 17168 ·𝑠 cvsca 17169 Mndcmnd 18646 .gcmg 18984 mulGrpcmgp 20062 1rcur 20103 Ringcrg 20155 CRingccrg 20156 AssAlgcasa 21791 algSccascl 21793 Mat cmat 22325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-gsum 17350 df-prds 17355 df-pws 17357 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrg 20489 df-lmod 20799 df-lss 20869 df-sra 21111 df-rgmod 21112 df-dsmm 21673 df-frlm 21688 df-assa 21794 df-ascl 21796 df-mamu 22309 df-mat 22326 |
| This theorem is referenced by: cayhamlem3 22805 |
| Copyright terms: Public domain | W3C validator |