MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplascl Structured version   Visualization version   GIF version

Theorem mplascl 20262
Description: Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
mplascl.p 𝑃 = (𝐼 mPoly 𝑅)
mplascl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplascl.z 0 = (0g𝑅)
mplascl.b 𝐵 = (Base‘𝑅)
mplascl.a 𝐴 = (algSc‘𝑃)
mplascl.i (𝜑𝐼𝑊)
mplascl.r (𝜑𝑅 ∈ Ring)
mplascl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplascl (𝜑 → (𝐴𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
Distinct variable groups:   𝜑,𝑦   𝑦,𝐵   𝑦,𝐷   𝑓,𝐼,𝑦   𝑅,𝑓,𝑦   𝑦,𝑊   𝑦,𝑋   0 ,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑦,𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑊(𝑓)   𝑋(𝑓)

Proof of Theorem mplascl
StepHypRef Expression
1 mplascl.x . . . 4 (𝜑𝑋𝐵)
2 mplascl.b . . . . 5 𝐵 = (Base‘𝑅)
3 mplascl.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
4 mplascl.i . . . . . . 7 (𝜑𝐼𝑊)
5 mplascl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
63, 4, 5mplsca 20211 . . . . . 6 (𝜑𝑅 = (Scalar‘𝑃))
76fveq2d 6655 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
82, 7syl5eq 2871 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘𝑃)))
91, 8eleqtrd 2918 . . 3 (𝜑𝑋 ∈ (Base‘(Scalar‘𝑃)))
10 mplascl.a . . . 4 𝐴 = (algSc‘𝑃)
11 eqid 2824 . . . 4 (Scalar‘𝑃) = (Scalar‘𝑃)
12 eqid 2824 . . . 4 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
13 eqid 2824 . . . 4 ( ·𝑠𝑃) = ( ·𝑠𝑃)
14 eqid 2824 . . . 4 (1r𝑃) = (1r𝑃)
1510, 11, 12, 13, 14asclval 20095 . . 3 (𝑋 ∈ (Base‘(Scalar‘𝑃)) → (𝐴𝑋) = (𝑋( ·𝑠𝑃)(1r𝑃)))
169, 15syl 17 . 2 (𝜑 → (𝐴𝑋) = (𝑋( ·𝑠𝑃)(1r𝑃)))
17 mplascl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
18 mplascl.z . . . 4 0 = (0g𝑅)
19 eqid 2824 . . . 4 (1r𝑅) = (1r𝑅)
203, 17, 18, 19, 14, 4, 5mpl1 20210 . . 3 (𝜑 → (1r𝑃) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 )))
2120oveq2d 7154 . 2 (𝜑 → (𝑋( ·𝑠𝑃)(1r𝑃)) = (𝑋( ·𝑠𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))))
2217psrbag0 20260 . . . 4 (𝐼𝑊 → (𝐼 × {0}) ∈ 𝐷)
234, 22syl 17 . . 3 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
243, 13, 17, 19, 18, 2, 4, 5, 23, 1mplmon2 20259 . 2 (𝜑 → (𝑋( ·𝑠𝑃)(𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), (1r𝑅), 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
2516, 21, 243eqtrd 2863 1 (𝜑 → (𝐴𝑋) = (𝑦𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {crab 3136  ifcif 4448  {csn 4548  cmpt 5127   × cxp 5534  ccnv 5535  cima 5539  cfv 6336  (class class class)co 7138  m cmap 8389  Fincfn 8492  0cc0 10522  cn 11623  0cn0 11883  Basecbs 16472  Scalarcsca 16557   ·𝑠 cvsca 16558  0gc0g 16702  1rcur 19240  Ringcrg 19286  algSccascl 20070   mPoly cmpl 20119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-ofr 7393  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-fzo 13027  df-seq 13363  df-hash 13685  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-sca 16570  df-vsca 16571  df-tset 16573  df-0g 16704  df-gsum 16705  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-mhm 17945  df-submnd 17946  df-grp 18095  df-minusg 18096  df-mulg 18214  df-subg 18265  df-ghm 18345  df-cntz 18436  df-cmn 18897  df-abl 18898  df-mgp 19229  df-ur 19241  df-ring 19288  df-subrg 19519  df-ascl 20073  df-psr 20122  df-mpl 20124
This theorem is referenced by:  subrgascl  20264  subrgasclcl  20265  evlslem1  20281  mdegle0  24667
  Copyright terms: Public domain W3C validator