Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg1cN Structured version   Visualization version   GIF version

Theorem cdlemg1cN 38580
Description: Any translation belongs to the set of functions constructed for cdleme 38553. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg1c.l = (le‘𝐾)
cdlemg1c.a 𝐴 = (Atoms‘𝐾)
cdlemg1c.h 𝐻 = (LHyp‘𝐾)
cdlemg1c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg1cN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑇𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊

Proof of Theorem cdlemg1cN
StepHypRef Expression
1 simpll1 1210 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpll2 1211 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → 𝐹𝑇)
4 cdlemg1c.l . . . . 5 = (le‘𝐾)
5 cdlemg1c.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 cdlemg1c.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemg1c.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
84, 5, 6, 7cdlemeiota 38578 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))
91, 2, 3, 8syl3anc 1369 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))
10 simplr 765 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → (𝐹𝑃) = 𝑄)
1110eqeq2d 2750 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → ((𝑓𝑃) = (𝐹𝑃) ↔ (𝑓𝑃) = 𝑄))
1211riotabidv 7227 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = (𝑓𝑇 (𝑓𝑃) = 𝑄))
139, 12eqtrd 2779 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄))
144, 5, 6, 7cdlemg1ci2 38579 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)) → 𝐹𝑇)
1514adantlr 711 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) ∧ 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)) → 𝐹𝑇)
1613, 15impbida 797 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) = 𝑄) → (𝐹𝑇𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  crio 7224  lecple 16950  Atomscatm 37256  HLchlt 37343  LHypclh 37977  LTrncltrn 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-riotaBAD 36946
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-undef 8073  df-map 8591  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492  df-lvols 37493  df-lines 37494  df-psubsp 37496  df-pmap 37497  df-padd 37789  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152
This theorem is referenced by:  cdlemg2cN  38582
  Copyright terms: Public domain W3C validator