![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg1cN | Structured version Visualization version GIF version |
Description: Any translation belongs to the set of functions constructed for cdleme 40543. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemg1c.l | ⊢ ≤ = (le‘𝐾) |
cdlemg1c.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg1c.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg1c.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg1cN | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) → (𝐹 ∈ 𝑇 ↔ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll1 1211 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simpll2 1212 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
3 | simpr 484 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
4 | cdlemg1c.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemg1c.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg1c.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg1c.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 4, 5, 6, 7 | cdlemeiota 40568 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃))) |
9 | 1, 2, 3, 8 | syl3anc 1370 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃))) |
10 | simplr 769 | . . . . 5 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → (𝐹‘𝑃) = 𝑄) | |
11 | 10 | eqeq2d 2746 | . . . 4 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → ((𝑓‘𝑃) = (𝐹‘𝑃) ↔ (𝑓‘𝑃) = 𝑄)) |
12 | 11 | riotabidv 7390 | . . 3 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
13 | 9, 12 | eqtrd 2775 | . 2 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 ∈ 𝑇) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) |
14 | 4, 5, 6, 7 | cdlemg1ci2 40569 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) → 𝐹 ∈ 𝑇) |
15 | 14 | adantlr 715 | . 2 ⊢ (((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) ∧ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄)) → 𝐹 ∈ 𝑇) |
16 | 13, 15 | impbida 801 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑄) → (𝐹 ∈ 𝑇 ↔ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 ℩crio 7387 lecple 17305 Atomscatm 39245 HLchlt 39332 LHypclh 39967 LTrncltrn 40084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-undef 8297 df-map 8867 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 |
This theorem is referenced by: cdlemg2cN 40572 |
Copyright terms: Public domain | W3C validator |