Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeiota Structured version   Visualization version   GIF version

Theorem cdlemeiota 38853
Description: A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1c.l = (le‘𝐾)
cdlemg1c.a 𝐴 = (Atoms‘𝐾)
cdlemg1c.h 𝐻 = (LHyp‘𝐾)
cdlemg1c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemeiota (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑇,𝑓   𝑓,𝑊

Proof of Theorem cdlemeiota
StepHypRef Expression
1 eqidd 2737 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → (𝐹𝑃) = (𝐹𝑃))
2 simp3 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹𝑇)
3 cdlemg1c.l . . . . . . 7 = (le‘𝐾)
4 cdlemg1c.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 cdlemg1c.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 cdlemg1c.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 4, 5, 6ltrnel 38407 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
873com23 1125 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
93, 4, 5, 6cdleme 38828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = (𝐹𝑃))
108, 9syld3an3 1408 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → ∃!𝑓𝑇 (𝑓𝑃) = (𝐹𝑃))
11 fveq1 6824 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑃) = (𝐹𝑃))
1211eqeq1d 2738 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑃) = (𝐹𝑃) ↔ (𝐹𝑃) = (𝐹𝑃)))
1312riota2 7319 . . . 4 ((𝐹𝑇 ∧ ∃!𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) → ((𝐹𝑃) = (𝐹𝑃) ↔ (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = 𝐹))
142, 10, 13syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑃) = (𝐹𝑃) ↔ (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = 𝐹))
151, 14mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = 𝐹)
1615eqcomd 2742 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  ∃!wreu 3347   class class class wbr 5092  cfv 6479  crio 7292  lecple 17066  Atomscatm 37530  HLchlt 37617  LHypclh 38252  LTrncltrn 38369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-riotaBAD 37220
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-undef 8159  df-map 8688  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-p0 18240  df-p1 18241  df-lat 18247  df-clat 18314  df-oposet 37443  df-ol 37445  df-oml 37446  df-covers 37533  df-ats 37534  df-atl 37565  df-cvlat 37589  df-hlat 37618  df-llines 37766  df-lplanes 37767  df-lvols 37768  df-lines 37769  df-psubsp 37771  df-pmap 37772  df-padd 38064  df-lhyp 38256  df-laut 38257  df-ldil 38372  df-ltrn 38373  df-trl 38427
This theorem is referenced by:  cdlemg1cN  38855  cdlemg1cex  38856  cdlemm10N  39386
  Copyright terms: Public domain W3C validator