Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeiota Structured version   Visualization version   GIF version

Theorem cdlemeiota 38599
Description: A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013.)
Hypotheses
Ref Expression
cdlemg1c.l = (le‘𝐾)
cdlemg1c.a 𝐴 = (Atoms‘𝐾)
cdlemg1c.h 𝐻 = (LHyp‘𝐾)
cdlemg1c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemeiota (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑇,𝑓   𝑓,𝑊

Proof of Theorem cdlemeiota
StepHypRef Expression
1 eqidd 2739 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → (𝐹𝑃) = (𝐹𝑃))
2 simp3 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹𝑇)
3 cdlemg1c.l . . . . . . 7 = (le‘𝐾)
4 cdlemg1c.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 cdlemg1c.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 cdlemg1c.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 4, 5, 6ltrnel 38153 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
873com23 1125 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
93, 4, 5, 6cdleme 38574 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = (𝐹𝑃))
108, 9syld3an3 1408 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → ∃!𝑓𝑇 (𝑓𝑃) = (𝐹𝑃))
11 fveq1 6773 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑃) = (𝐹𝑃))
1211eqeq1d 2740 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑃) = (𝐹𝑃) ↔ (𝐹𝑃) = (𝐹𝑃)))
1312riota2 7258 . . . 4 ((𝐹𝑇 ∧ ∃!𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) → ((𝐹𝑃) = (𝐹𝑃) ↔ (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = 𝐹))
142, 10, 13syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑃) = (𝐹𝑃) ↔ (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = 𝐹))
151, 14mpbid 231 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)) = 𝐹)
1615eqcomd 2744 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐹𝑇) → 𝐹 = (𝑓𝑇 (𝑓𝑃) = (𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ∃!wreu 3066   class class class wbr 5074  cfv 6433  crio 7231  lecple 16969  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemg1cN  38601  cdlemg1cex  38602  cdlemm10N  39132
  Copyright terms: Public domain W3C validator