![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2k | Structured version Visualization version GIF version |
Description: cdleme42keg 40086 with simpler hypotheses. TODO: FIX COMMENT. TODO: derive from cdlemg3a 40197, cdlemg2fv2 40200, cdlemg2jOLDN 40198, ltrnel 39739? (Contributed by NM, 22-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2inv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2inv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2j.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2j.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2j.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2j.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2j.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemg2k | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | cdlemg2j.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2j.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg2j.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg2j.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2inv.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2inv.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2725 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ 𝑊) = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
9 | eqid 2725 | . 2 ⊢ ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) = ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
10 | eqid 2725 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
11 | eqid 2725 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
12 | cdlemg2j.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg2klem 40195 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ⦋csb 3889 ifcif 4530 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6549 ℩crio 7374 (class class class)co 7419 Basecbs 17183 lecple 17243 joincjn 18306 meetcmee 18307 Atomscatm 38862 HLchlt 38949 LHypclh 39584 LTrncltrn 39701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-riotaBAD 38552 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-undef 8279 df-map 8847 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 38775 df-ol 38777 df-oml 38778 df-covers 38865 df-ats 38866 df-atl 38897 df-cvlat 38921 df-hlat 38950 df-llines 39098 df-lplanes 39099 df-lvols 39100 df-lines 39101 df-psubsp 39103 df-pmap 39104 df-padd 39396 df-lhyp 39588 df-laut 39589 df-ldil 39704 df-ltrn 39705 df-trl 39759 |
This theorem is referenced by: cdlemg2kq 40202 cdlemg2l 40203 cdlemg2m 40204 cdlemg9b 40233 cdlemg10bALTN 40236 cdlemg12b 40244 cdlemg17e 40265 |
Copyright terms: Public domain | W3C validator |