Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2k Structured version   Visualization version   GIF version

Theorem cdlemg2k 36621
Description: cdleme42keg 36506 with simpler hypotheses. TODO: FIX COMMENT. TODO: derive from cdlemg3a 36617, cdlemg2fv2 36620, cdlemg2jOLDN 36618, ltrnel 36159? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h 𝐻 = (LHyp‘𝐾)
cdlemg2inv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2j.l = (le‘𝐾)
cdlemg2j.j = (join‘𝐾)
cdlemg2j.a 𝐴 = (Atoms‘𝐾)
cdlemg2j.m = (meet‘𝐾)
cdlemg2j.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdlemg2k (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑈))

Proof of Theorem cdlemg2k
Dummy variables 𝑞 𝑝 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2800 . 2 (Base‘𝐾) = (Base‘𝐾)
2 cdlemg2j.l . 2 = (le‘𝐾)
3 cdlemg2j.j . 2 = (join‘𝐾)
4 cdlemg2j.m . 2 = (meet‘𝐾)
5 cdlemg2j.a . 2 𝐴 = (Atoms‘𝐾)
6 cdlemg2inv.h . 2 𝐻 = (LHyp‘𝐾)
7 cdlemg2inv.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2800 . 2 ((𝑝 𝑞) 𝑊) = ((𝑝 𝑞) 𝑊)
9 eqid 2800 . 2 ((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊))) = ((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊)))
10 eqid 2800 . 2 ((𝑝 𝑞) (((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊))) ((𝑠 𝑡) 𝑊))) = ((𝑝 𝑞) (((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊))) ((𝑠 𝑡) 𝑊)))
11 eqid 2800 . 2 (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = ((𝑝 𝑞) (((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊))) ((𝑠 𝑡) 𝑊))))), 𝑠 / 𝑡((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊)))) (𝑥 𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧 ∈ (Base‘𝐾)∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦 ∈ (Base‘𝐾)∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = ((𝑝 𝑞) (((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊))) ((𝑠 𝑡) 𝑊))))), 𝑠 / 𝑡((𝑡 ((𝑝 𝑞) 𝑊)) (𝑞 ((𝑝 𝑡) 𝑊)))) (𝑥 𝑊)))), 𝑥))
12 cdlemg2j.u . 2 𝑈 = ((𝑃 𝑄) 𝑊)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemg2klem 36615 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2972  wral 3090  csb 3729  ifcif 4278   class class class wbr 4844  cmpt 4923  cfv 6102  crio 6839  (class class class)co 6879  Basecbs 16183  lecple 16273  joincjn 17258  meetcmee 17259  Atomscatm 35283  HLchlt 35370  LHypclh 36004  LTrncltrn 36121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-riotaBAD 34973
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-1st 7402  df-2nd 7403  df-undef 7638  df-map 8098  df-proset 17242  df-poset 17260  df-plt 17272  df-lub 17288  df-glb 17289  df-join 17290  df-meet 17291  df-p0 17353  df-p1 17354  df-lat 17360  df-clat 17422  df-oposet 35196  df-ol 35198  df-oml 35199  df-covers 35286  df-ats 35287  df-atl 35318  df-cvlat 35342  df-hlat 35371  df-llines 35518  df-lplanes 35519  df-lvols 35520  df-lines 35521  df-psubsp 35523  df-pmap 35524  df-padd 35816  df-lhyp 36008  df-laut 36009  df-ldil 36124  df-ltrn 36125  df-trl 36179
This theorem is referenced by:  cdlemg2kq  36622  cdlemg2l  36623  cdlemg2m  36624  cdlemg9b  36653  cdlemg10bALTN  36656  cdlemg12b  36664  cdlemg17e  36685
  Copyright terms: Public domain W3C validator