Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2k | Structured version Visualization version GIF version |
Description: cdleme42keg 38267 with simpler hypotheses. TODO: FIX COMMENT. TODO: derive from cdlemg3a 38378, cdlemg2fv2 38381, cdlemg2jOLDN 38379, ltrnel 37920? (Contributed by NM, 22-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2inv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2inv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2j.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2j.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2j.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2j.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2j.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemg2k | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | cdlemg2j.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2j.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg2j.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg2j.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2inv.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2inv.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | eqid 2738 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ 𝑊) = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
9 | eqid 2738 | . 2 ⊢ ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) = ((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
10 | eqid 2738 | . 2 ⊢ ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
11 | eqid 2738 | . 2 ⊢ (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) = (𝑥 ∈ (Base‘𝐾) ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ (Base‘𝐾)∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ (Base‘𝐾)∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = ((𝑝 ∨ 𝑞) ∧ (((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))), ⦋𝑠 / 𝑡⦌((𝑡 ∨ ((𝑝 ∨ 𝑞) ∧ 𝑊)) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
12 | cdlemg2j.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg2klem 38376 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∀wral 3062 ⦋csb 3826 ifcif 4454 class class class wbr 5068 ↦ cmpt 5150 ‘cfv 6398 ℩crio 7188 (class class class)co 7232 Basecbs 16788 lecple 16837 joincjn 17846 meetcmee 17847 Atomscatm 37044 HLchlt 37131 LHypclh 37765 LTrncltrn 37882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-riotaBAD 36734 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-1st 7780 df-2nd 7781 df-undef 8036 df-map 8531 df-proset 17830 df-poset 17848 df-plt 17864 df-lub 17880 df-glb 17881 df-join 17882 df-meet 17883 df-p0 17959 df-p1 17960 df-lat 17966 df-clat 18033 df-oposet 36957 df-ol 36959 df-oml 36960 df-covers 37047 df-ats 37048 df-atl 37079 df-cvlat 37103 df-hlat 37132 df-llines 37279 df-lplanes 37280 df-lvols 37281 df-lines 37282 df-psubsp 37284 df-pmap 37285 df-padd 37577 df-lhyp 37769 df-laut 37770 df-ldil 37885 df-ltrn 37886 df-trl 37940 |
This theorem is referenced by: cdlemg2kq 38383 cdlemg2l 38384 cdlemg2m 38385 cdlemg9b 38414 cdlemg10bALTN 38417 cdlemg12b 38425 cdlemg17e 38446 |
Copyright terms: Public domain | W3C validator |