![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2k | Structured version Visualization version GIF version |
Description: cdleme42keg 39660 with simpler hypotheses. TODO: FIX COMMENT. TODO: derive from cdlemg3a 39771, cdlemg2fv2 39774, cdlemg2jOLDN 39772, ltrnel 39313? (Contributed by NM, 22-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2inv.h | β’ π» = (LHypβπΎ) |
cdlemg2inv.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemg2j.l | β’ β€ = (leβπΎ) |
cdlemg2j.j | β’ β¨ = (joinβπΎ) |
cdlemg2j.a | β’ π΄ = (AtomsβπΎ) |
cdlemg2j.m | β’ β§ = (meetβπΎ) |
cdlemg2j.u | β’ π = ((π β¨ π) β§ π) |
Ref | Expression |
---|---|
cdlemg2k | β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ πΉ β π) β ((πΉβπ) β¨ (πΉβπ)) = ((πΉβπ) β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | cdlemg2j.l | . 2 β’ β€ = (leβπΎ) | |
3 | cdlemg2j.j | . 2 β’ β¨ = (joinβπΎ) | |
4 | cdlemg2j.m | . 2 β’ β§ = (meetβπΎ) | |
5 | cdlemg2j.a | . 2 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemg2inv.h | . 2 β’ π» = (LHypβπΎ) | |
7 | cdlemg2inv.t | . 2 β’ π = ((LTrnβπΎ)βπ) | |
8 | eqid 2732 | . 2 β’ ((π β¨ π) β§ π) = ((π β¨ π) β§ π) | |
9 | eqid 2732 | . 2 β’ ((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π))) = ((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π))) | |
10 | eqid 2732 | . 2 β’ ((π β¨ π) β§ (((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π))) β¨ ((π β¨ π‘) β§ π))) = ((π β¨ π) β§ (((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π))) β¨ ((π β¨ π‘) β§ π))) | |
11 | eqid 2732 | . 2 β’ (π₯ β (BaseβπΎ) β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β (BaseβπΎ)βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β (BaseβπΎ)βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = ((π β¨ π) β§ (((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π))) β¨ ((π β¨ π‘) β§ π))))), β¦π / π‘β¦((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π)))) β¨ (π₯ β§ π)))), π₯)) = (π₯ β (BaseβπΎ) β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β (BaseβπΎ)βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β (BaseβπΎ)βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = ((π β¨ π) β§ (((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π))) β¨ ((π β¨ π‘) β§ π))))), β¦π / π‘β¦((π‘ β¨ ((π β¨ π) β§ π)) β§ (π β¨ ((π β¨ π‘) β§ π)))) β¨ (π₯ β§ π)))), π₯)) | |
12 | cdlemg2j.u | . 2 β’ π = ((π β¨ π) β§ π) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg2klem 39769 | 1 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ πΉ β π) β ((πΉβπ) β¨ (πΉβπ)) = ((πΉβπ) β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β¦csb 3893 ifcif 4528 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 β©crio 7366 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 meetcmee 18269 Atomscatm 38436 HLchlt 38523 LHypclh 39158 LTrncltrn 39275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-riotaBAD 38126 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-undef 8260 df-map 8824 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 df-lvols 38674 df-lines 38675 df-psubsp 38677 df-pmap 38678 df-padd 38970 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 |
This theorem is referenced by: cdlemg2kq 39776 cdlemg2l 39777 cdlemg2m 39778 cdlemg9b 39807 cdlemg10bALTN 39810 cdlemg12b 39818 cdlemg17e 39839 |
Copyright terms: Public domain | W3C validator |