| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml5N | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdleml3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| cdleml5N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | cdleml1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdleml1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | cdleml1.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | cdleml1.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | cdleml3.o | . . . . 5 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 7 | 2, 3, 4, 5, 6 | tendo0cl 40773 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐸) |
| 8 | 1, 7 | syl 17 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 0 ∈ 𝐸) |
| 9 | simpl2l 1227 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑈 ∈ 𝐸) | |
| 10 | 2, 3, 4, 5, 6 | tendo0mul 40809 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ( 0 ∘ 𝑈) = 0 ) |
| 11 | 1, 9, 10 | syl2anc 584 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 0 ) |
| 12 | simpr 484 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 ) | |
| 13 | 11, 12 | eqtr4d 2767 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 𝑉) |
| 14 | coeq1 5800 | . . . . 5 ⊢ (𝑠 = 0 → (𝑠 ∘ 𝑈) = ( 0 ∘ 𝑈)) | |
| 15 | 14 | eqeq1d 2731 | . . . 4 ⊢ (𝑠 = 0 → ((𝑠 ∘ 𝑈) = 𝑉 ↔ ( 0 ∘ 𝑈) = 𝑉)) |
| 16 | 15 | rspcev 3577 | . . 3 ⊢ (( 0 ∈ 𝐸 ∧ ( 0 ∘ 𝑈) = 𝑉) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
| 17 | 8, 13, 16 | syl2anc 584 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
| 18 | simpl1 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 19 | simpl2 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) | |
| 20 | simpl3 1194 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑈 ≠ 0 ) | |
| 21 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑉 ≠ 0 ) | |
| 22 | cdleml1.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 23 | 2, 3, 4, 22, 5, 6 | cdleml4N 40962 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
| 24 | 18, 19, 20, 21, 23 | syl112anc 1376 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
| 25 | 17, 24 | pm2.61dane 3012 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ↦ cmpt 5173 I cid 5513 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6482 Basecbs 17120 HLchlt 39333 LHypclh 39967 LTrncltrn 40084 trLctrl 40141 TEndoctendo 40735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-riotaBAD 38936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-undef 8206 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |