![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml5N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdleml3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
cdleml5N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdleml1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdleml1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdleml1.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdleml1.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | cdleml3.o | . . . . 5 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
7 | 2, 3, 4, 5, 6 | tendo0cl 40263 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐸) |
8 | 1, 7 | syl 17 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 0 ∈ 𝐸) |
9 | simpl2l 1224 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑈 ∈ 𝐸) | |
10 | 2, 3, 4, 5, 6 | tendo0mul 40299 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ( 0 ∘ 𝑈) = 0 ) |
11 | 1, 9, 10 | syl2anc 583 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 0 ) |
12 | simpr 484 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 ) | |
13 | 11, 12 | eqtr4d 2771 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 𝑉) |
14 | coeq1 5860 | . . . . 5 ⊢ (𝑠 = 0 → (𝑠 ∘ 𝑈) = ( 0 ∘ 𝑈)) | |
15 | 14 | eqeq1d 2730 | . . . 4 ⊢ (𝑠 = 0 → ((𝑠 ∘ 𝑈) = 𝑉 ↔ ( 0 ∘ 𝑈) = 𝑉)) |
16 | 15 | rspcev 3609 | . . 3 ⊢ (( 0 ∈ 𝐸 ∧ ( 0 ∘ 𝑈) = 𝑉) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
17 | 8, 13, 16 | syl2anc 583 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
18 | simpl1 1189 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
19 | simpl2 1190 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) | |
20 | simpl3 1191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑈 ≠ 0 ) | |
21 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑉 ≠ 0 ) | |
22 | cdleml1.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
23 | 2, 3, 4, 22, 5, 6 | cdleml4N 40452 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
24 | 18, 19, 20, 21, 23 | syl112anc 1372 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
25 | 17, 24 | pm2.61dane 3026 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∃wrex 3067 ↦ cmpt 5231 I cid 5575 ↾ cres 5680 ∘ ccom 5682 ‘cfv 6548 Basecbs 17180 HLchlt 38822 LHypclh 39457 LTrncltrn 39574 trLctrl 39631 TEndoctendo 40225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-riotaBAD 38425 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-undef 8279 df-map 8847 df-proset 18287 df-poset 18305 df-plt 18322 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-p0 18417 df-p1 18418 df-lat 18424 df-clat 18491 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-llines 38971 df-lplanes 38972 df-lvols 38973 df-lines 38974 df-psubsp 38976 df-pmap 38977 df-padd 39269 df-lhyp 39461 df-laut 39462 df-ldil 39577 df-ltrn 39578 df-trl 39632 df-tendo 40228 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |