Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml5N Structured version   Visualization version   GIF version

Theorem cdleml5N 40963
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml5N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑔   𝐵,𝑔,𝑠   𝑔,𝐻,𝑠   𝑔,𝐾   0 ,𝑠   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝑅(𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml5N
StepHypRef Expression
1 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdleml1.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 cdleml3.o . . . . 5 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 40773 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
81, 7syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 0𝐸)
9 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑈𝐸)
102, 3, 4, 5, 6tendo0mul 40809 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → ( 0𝑈) = 0 )
111, 9, 10syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 0 )
12 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 )
1311, 12eqtr4d 2767 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 𝑉)
14 coeq1 5800 . . . . 5 (𝑠 = 0 → (𝑠𝑈) = ( 0𝑈))
1514eqeq1d 2731 . . . 4 (𝑠 = 0 → ((𝑠𝑈) = 𝑉 ↔ ( 0𝑈) = 𝑉))
1615rspcev 3577 . . 3 (( 0𝐸 ∧ ( 0𝑈) = 𝑉) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
178, 13, 16syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
18 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝑈𝐸𝑉𝐸))
20 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑈0 )
21 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑉0 )
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
232, 3, 4, 22, 5, 6cdleml4N 40962 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2418, 19, 20, 21, 23syl112anc 1376 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2517, 24pm2.61dane 3012 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cmpt 5173   I cid 5513  cres 5621  ccom 5623  cfv 6482  Basecbs 17120  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  trLctrl 40141  TEndoctendo 40735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator