Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml5N Structured version   Visualization version   GIF version

Theorem cdleml5N 40957
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml5N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑔   𝐵,𝑔,𝑠   𝑔,𝐻,𝑠   𝑔,𝐾   0 ,𝑠   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝑅(𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml5N
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdleml1.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 cdleml3.o . . . . 5 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 40767 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
81, 7syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 0𝐸)
9 simpl2l 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑈𝐸)
102, 3, 4, 5, 6tendo0mul 40803 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → ( 0𝑈) = 0 )
111, 9, 10syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 0 )
12 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 )
1311, 12eqtr4d 2772 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 𝑉)
14 coeq1 5848 . . . . 5 (𝑠 = 0 → (𝑠𝑈) = ( 0𝑈))
1514eqeq1d 2736 . . . 4 (𝑠 = 0 → ((𝑠𝑈) = 𝑉 ↔ ( 0𝑈) = 𝑉))
1615rspcev 3605 . . 3 (( 0𝐸 ∧ ( 0𝑈) = 𝑉) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
178, 13, 16syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
18 simpl1 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝑈𝐸𝑉𝐸))
20 simpl3 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑈0 )
21 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑉0 )
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
232, 3, 4, 22, 5, 6cdleml4N 40956 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2418, 19, 20, 21, 23syl112anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2517, 24pm2.61dane 3018 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cmpt 5205   I cid 5557  cres 5667  ccom 5669  cfv 6541  Basecbs 17230  HLchlt 39326  LHypclh 39961  LTrncltrn 40078  trLctrl 40135  TEndoctendo 40729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-riotaBAD 38929
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-undef 8280  df-map 8850  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-atl 39274  df-cvlat 39298  df-hlat 39327  df-llines 39475  df-lplanes 39476  df-lvols 39477  df-lines 39478  df-psubsp 39480  df-pmap 39481  df-padd 39773  df-lhyp 39965  df-laut 39966  df-ldil 40081  df-ltrn 40082  df-trl 40136  df-tendo 40732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator