Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml5N Structured version   Visualization version   GIF version

Theorem cdleml5N 38994
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml5N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑔   𝐵,𝑔,𝑠   𝑔,𝐻,𝑠   𝑔,𝐾   0 ,𝑠   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝑅(𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml5N
StepHypRef Expression
1 simpl1 1190 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdleml1.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 cdleml3.o . . . . 5 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 38804 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
81, 7syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 0𝐸)
9 simpl2l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑈𝐸)
102, 3, 4, 5, 6tendo0mul 38840 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → ( 0𝑈) = 0 )
111, 9, 10syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 0 )
12 simpr 485 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 )
1311, 12eqtr4d 2781 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 𝑉)
14 coeq1 5766 . . . . 5 (𝑠 = 0 → (𝑠𝑈) = ( 0𝑈))
1514eqeq1d 2740 . . . 4 (𝑠 = 0 → ((𝑠𝑈) = 𝑉 ↔ ( 0𝑈) = 𝑉))
1615rspcev 3561 . . 3 (( 0𝐸 ∧ ( 0𝑈) = 𝑉) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
178, 13, 16syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
18 simpl1 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝑈𝐸𝑉𝐸))
20 simpl3 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑈0 )
21 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑉0 )
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
232, 3, 4, 22, 5, 6cdleml4N 38993 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2418, 19, 20, 21, 23syl112anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2517, 24pm2.61dane 3032 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cmpt 5157   I cid 5488  cres 5591  ccom 5593  cfv 6433  Basecbs 16912  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator