Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml5N Structured version   Visualization version   GIF version

Theorem cdleml5N 40929
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml5N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠,𝑔   𝐵,𝑔,𝑠   𝑔,𝐻,𝑠   𝑔,𝐾   0 ,𝑠   𝑇,𝑔   𝑔,𝑊
Allowed substitution hints:   𝑅(𝑔)   𝑈(𝑔)   𝐸(𝑔)   𝑉(𝑔)   0 (𝑔)

Proof of Theorem cdleml5N
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdleml1.b . . . . 5 𝐵 = (Base‘𝐾)
3 cdleml1.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 cdleml1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdleml1.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 cdleml3.o . . . . 5 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 40739 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
81, 7syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 0𝐸)
9 simpl2l 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑈𝐸)
102, 3, 4, 5, 6tendo0mul 40775 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → ( 0𝑈) = 0 )
111, 9, 10syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 0 )
12 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 )
1311, 12eqtr4d 2783 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ( 0𝑈) = 𝑉)
14 coeq1 5877 . . . . 5 (𝑠 = 0 → (𝑠𝑈) = ( 0𝑈))
1514eqeq1d 2742 . . . 4 (𝑠 = 0 → ((𝑠𝑈) = 𝑉 ↔ ( 0𝑈) = 𝑉))
1615rspcev 3635 . . 3 (( 0𝐸 ∧ ( 0𝑈) = 𝑉) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
178, 13, 16syl2anc 583 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉 = 0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
18 simpl1 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → (𝑈𝐸𝑉𝐸))
20 simpl3 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑈0 )
21 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → 𝑉0 )
22 cdleml1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
232, 3, 4, 22, 5, 6cdleml4N 40928 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2418, 19, 20, 21, 23syl112anc 1374 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) ∧ 𝑉0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
2517, 24pm2.61dane 3035 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cmpt 5249   I cid 5592  cres 5697  ccom 5699  cfv 6568  Basecbs 17252  HLchlt 39298  LHypclh 39933  LTrncltrn 40050  trLctrl 40107  TEndoctendo 40701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-riotaBAD 38901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-mpo 7448  df-1st 8024  df-2nd 8025  df-undef 8308  df-map 8880  df-proset 18359  df-poset 18377  df-plt 18394  df-lub 18410  df-glb 18411  df-join 18412  df-meet 18413  df-p0 18489  df-p1 18490  df-lat 18496  df-clat 18563  df-oposet 39124  df-ol 39126  df-oml 39127  df-covers 39214  df-ats 39215  df-atl 39246  df-cvlat 39270  df-hlat 39299  df-llines 39447  df-lplanes 39448  df-lvols 39449  df-lines 39450  df-psubsp 39452  df-pmap 39453  df-padd 39745  df-lhyp 39937  df-laut 39938  df-ldil 40053  df-ltrn 40054  df-trl 40108  df-tendo 40704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator