![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml5N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
cdleml3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
cdleml5N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | cdleml1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdleml1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | cdleml1.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | cdleml1.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | cdleml3.o | . . . . 5 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
7 | 2, 3, 4, 5, 6 | tendo0cl 40739 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐸) |
8 | 1, 7 | syl 17 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 0 ∈ 𝐸) |
9 | simpl2l 1226 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑈 ∈ 𝐸) | |
10 | 2, 3, 4, 5, 6 | tendo0mul 40775 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → ( 0 ∘ 𝑈) = 0 ) |
11 | 1, 9, 10 | syl2anc 583 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 0 ) |
12 | simpr 484 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → 𝑉 = 0 ) | |
13 | 11, 12 | eqtr4d 2783 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ( 0 ∘ 𝑈) = 𝑉) |
14 | coeq1 5877 | . . . . 5 ⊢ (𝑠 = 0 → (𝑠 ∘ 𝑈) = ( 0 ∘ 𝑈)) | |
15 | 14 | eqeq1d 2742 | . . . 4 ⊢ (𝑠 = 0 → ((𝑠 ∘ 𝑈) = 𝑉 ↔ ( 0 ∘ 𝑈) = 𝑉)) |
16 | 15 | rspcev 3635 | . . 3 ⊢ (( 0 ∈ 𝐸 ∧ ( 0 ∘ 𝑈) = 𝑉) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
17 | 8, 13, 16 | syl2anc 583 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 = 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
18 | simpl1 1191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
19 | simpl2 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) | |
20 | simpl3 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑈 ≠ 0 ) | |
21 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → 𝑉 ≠ 0 ) | |
22 | cdleml1.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
23 | 2, 3, 4, 22, 5, 6 | cdleml4N 40928 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝑈 ≠ 0 ∧ 𝑉 ≠ 0 )) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
24 | 18, 19, 20, 21, 23 | syl112anc 1374 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) ∧ 𝑉 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
25 | 17, 24 | pm2.61dane 3035 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑈 ≠ 0 ) → ∃𝑠 ∈ 𝐸 (𝑠 ∘ 𝑈) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ↦ cmpt 5249 I cid 5592 ↾ cres 5697 ∘ ccom 5699 ‘cfv 6568 Basecbs 17252 HLchlt 39298 LHypclh 39933 LTrncltrn 40050 trLctrl 40107 TEndoctendo 40701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-riotaBAD 38901 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-1st 8024 df-2nd 8025 df-undef 8308 df-map 8880 df-proset 18359 df-poset 18377 df-plt 18394 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-p0 18489 df-p1 18490 df-lat 18496 df-clat 18563 df-oposet 39124 df-ol 39126 df-oml 39127 df-covers 39214 df-ats 39215 df-atl 39246 df-cvlat 39270 df-hlat 39299 df-llines 39447 df-lplanes 39448 df-lvols 39449 df-lines 39450 df-psubsp 39452 df-pmap 39453 df-padd 39745 df-lhyp 39937 df-laut 39938 df-ldil 40053 df-ltrn 40054 df-trl 40108 df-tendo 40704 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |