Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml9 Structured version   Visualization version   GIF version

Theorem cdleml9 39497
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b 𝐡 = (Baseβ€˜πΎ)
cdleml6.j ∨ = (joinβ€˜πΎ)
cdleml6.m ∧ = (meetβ€˜πΎ)
cdleml6.h 𝐻 = (LHypβ€˜πΎ)
cdleml6.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdleml6.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdleml6.p 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
cdleml6.z 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
cdleml6.y π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdleml6.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
cdleml6.u π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
cdleml6.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
cdleml6.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
cdleml9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ π‘ˆ β‰  0 )
Distinct variable groups:   𝑔,𝑏,𝑧, ∧   ∨ ,𝑏,𝑔,𝑧   𝐡,𝑏,𝑓,𝑔,𝑧   β„Ž,𝑏,𝑔,𝑧   𝑠,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑓,𝑔,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝑔,𝑍
Allowed substitution hints:   𝐡(β„Ž,𝑠)   𝑄(𝑓,β„Ž,𝑠)   𝑅(𝑓,β„Ž,𝑠)   𝑇(β„Ž,𝑠)   π‘ˆ(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐸(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐻(𝑓,β„Ž,𝑠)   ∨ (𝑓,β„Ž,𝑠)   𝐾(𝑓,β„Ž,𝑠)   ∧ (𝑓,β„Ž,𝑠)   π‘Š(𝑓,β„Ž,𝑠)   𝑋(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   π‘Œ(𝑓,𝑔,β„Ž,𝑠,𝑏)   0 (𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝑍(𝑧,𝑓,β„Ž,𝑠,𝑏)

Proof of Theorem cdleml9
StepHypRef Expression
1 cdleml6.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdleml6.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 cdleml6.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 cdleml6.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
5 cdleml6.o . . . 4 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
61, 2, 3, 4, 5tendo1ne0 39341 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) β‰  0 )
763ad2ant1 1134 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ( I β†Ύ 𝑇) β‰  0 )
8 cdleml6.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
9 cdleml6.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
10 cdleml6.r . . . . . . 7 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
11 cdleml6.p . . . . . . 7 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
12 cdleml6.z . . . . . . 7 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
13 cdleml6.y . . . . . . 7 π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
14 cdleml6.x . . . . . . 7 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
15 cdleml6.u . . . . . . 7 π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
161, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5cdleml8 39496 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
1716adantr 482 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) ∧ π‘ˆ = 0 ) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
18 coeq1 5817 . . . . . 6 (π‘ˆ = 0 β†’ (π‘ˆ ∘ 𝑠) = ( 0 ∘ 𝑠))
19 simp1 1137 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
20 simp3l 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ 𝑠 ∈ 𝐸)
211, 2, 3, 4, 5tendo0mul 39339 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ ( 0 ∘ 𝑠) = 0 )
2219, 20, 21syl2anc 585 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ( 0 ∘ 𝑠) = 0 )
2318, 22sylan9eqr 2795 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) ∧ π‘ˆ = 0 ) β†’ (π‘ˆ ∘ 𝑠) = 0 )
2417, 23eqtr3d 2775 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) ∧ π‘ˆ = 0 ) β†’ ( I β†Ύ 𝑇) = 0 )
2524ex 414 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ = 0 β†’ ( I β†Ύ 𝑇) = 0 ))
2625necon3d 2961 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (( I β†Ύ 𝑇) β‰  0 β†’ π‘ˆ β‰  0 ))
277, 26mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ π‘ˆ β‰  0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βˆ€wral 3061  ifcif 4490   ↦ cmpt 5192   I cid 5534  β—‘ccnv 5636   β†Ύ cres 5639   ∘ ccom 5641  β€˜cfv 6500  β„©crio 7316  (class class class)co 7361  Basecbs 17091  occoc 17149  joincjn 18208  meetcmee 18209  HLchlt 37862  LHypclh 38497  LTrncltrn 38614  trLctrl 38671  TEndoctendo 39265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-riotaBAD 37465
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-undef 8208  df-map 8773  df-proset 18192  df-poset 18210  df-plt 18227  df-lub 18243  df-glb 18244  df-join 18245  df-meet 18246  df-p0 18322  df-p1 18323  df-lat 18329  df-clat 18396  df-oposet 37688  df-ol 37690  df-oml 37691  df-covers 37778  df-ats 37779  df-atl 37810  df-cvlat 37834  df-hlat 37863  df-llines 38011  df-lplanes 38012  df-lvols 38013  df-lines 38014  df-psubsp 38016  df-pmap 38017  df-padd 38309  df-lhyp 38501  df-laut 38502  df-ldil 38617  df-ltrn 38618  df-trl 38672  df-tendo 39268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator