Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml9 Structured version   Visualization version   GIF version

Theorem cdleml9 40349
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b 𝐡 = (Baseβ€˜πΎ)
cdleml6.j ∨ = (joinβ€˜πΎ)
cdleml6.m ∧ = (meetβ€˜πΎ)
cdleml6.h 𝐻 = (LHypβ€˜πΎ)
cdleml6.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdleml6.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdleml6.p 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
cdleml6.z 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
cdleml6.y π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
cdleml6.x 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
cdleml6.u π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
cdleml6.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
cdleml6.o 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
cdleml9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ π‘ˆ β‰  0 )
Distinct variable groups:   𝑔,𝑏,𝑧, ∧   ∨ ,𝑏,𝑔,𝑧   𝐡,𝑏,𝑓,𝑔,𝑧   β„Ž,𝑏,𝑔,𝑧   𝑠,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑓,𝑔,𝑧   π‘Š,𝑏,𝑔,𝑧   𝑧,π‘Œ   𝑔,𝑍
Allowed substitution hints:   𝐡(β„Ž,𝑠)   𝑄(𝑓,β„Ž,𝑠)   𝑅(𝑓,β„Ž,𝑠)   𝑇(β„Ž,𝑠)   π‘ˆ(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐸(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝐻(𝑓,β„Ž,𝑠)   ∨ (𝑓,β„Ž,𝑠)   𝐾(𝑓,β„Ž,𝑠)   ∧ (𝑓,β„Ž,𝑠)   π‘Š(𝑓,β„Ž,𝑠)   𝑋(𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   π‘Œ(𝑓,𝑔,β„Ž,𝑠,𝑏)   0 (𝑧,𝑓,𝑔,β„Ž,𝑠,𝑏)   𝑍(𝑧,𝑓,β„Ž,𝑠,𝑏)

Proof of Theorem cdleml9
StepHypRef Expression
1 cdleml6.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 cdleml6.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 cdleml6.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 cdleml6.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
5 cdleml6.o . . . 4 0 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
61, 2, 3, 4, 5tendo1ne0 40193 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) β‰  0 )
763ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ( I β†Ύ 𝑇) β‰  0 )
8 cdleml6.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
9 cdleml6.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
10 cdleml6.r . . . . . . 7 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
11 cdleml6.p . . . . . . 7 𝑄 = ((ocβ€˜πΎ)β€˜π‘Š)
12 cdleml6.z . . . . . . 7 𝑍 = ((𝑄 ∨ (π‘…β€˜π‘)) ∧ ((β„Žβ€˜π‘„) ∨ (π‘…β€˜(𝑏 ∘ β—‘(π‘ β€˜β„Ž)))))
13 cdleml6.y . . . . . . 7 π‘Œ = ((𝑄 ∨ (π‘…β€˜π‘”)) ∧ (𝑍 ∨ (π‘…β€˜(𝑔 ∘ ◑𝑏))))
14 cdleml6.x . . . . . . 7 𝑋 = (℩𝑧 ∈ 𝑇 βˆ€π‘ ∈ 𝑇 ((𝑏 β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜(π‘ β€˜β„Ž)) ∧ (π‘…β€˜π‘) β‰  (π‘…β€˜π‘”)) β†’ (π‘§β€˜π‘„) = π‘Œ))
15 cdleml6.u . . . . . . 7 π‘ˆ = (𝑔 ∈ 𝑇 ↦ if((π‘ β€˜β„Ž) = β„Ž, 𝑔, 𝑋))
161, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5cdleml8 40348 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
1716adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) ∧ π‘ˆ = 0 ) β†’ (π‘ˆ ∘ 𝑠) = ( I β†Ύ 𝑇))
18 coeq1 5848 . . . . . 6 (π‘ˆ = 0 β†’ (π‘ˆ ∘ 𝑠) = ( 0 ∘ 𝑠))
19 simp1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
20 simp3l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ 𝑠 ∈ 𝐸)
211, 2, 3, 4, 5tendo0mul 40191 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) β†’ ( 0 ∘ 𝑠) = 0 )
2219, 20, 21syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ ( 0 ∘ 𝑠) = 0 )
2318, 22sylan9eqr 2786 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) ∧ π‘ˆ = 0 ) β†’ (π‘ˆ ∘ 𝑠) = 0 )
2417, 23eqtr3d 2766 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) ∧ π‘ˆ = 0 ) β†’ ( I β†Ύ 𝑇) = 0 )
2524ex 412 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (π‘ˆ = 0 β†’ ( I β†Ύ 𝑇) = 0 ))
2625necon3d 2953 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ (( I β†Ύ 𝑇) β‰  0 β†’ π‘ˆ β‰  0 ))
277, 26mpd 15 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (β„Ž ∈ 𝑇 ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 β‰  0 )) β†’ π‘ˆ β‰  0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  ifcif 4521   ↦ cmpt 5222   I cid 5564  β—‘ccnv 5666   β†Ύ cres 5669   ∘ ccom 5671  β€˜cfv 6534  β„©crio 7357  (class class class)co 7402  Basecbs 17145  occoc 17206  joincjn 18268  meetcmee 18269  HLchlt 38714  LHypclh 39349  LTrncltrn 39466  trLctrl 39523  TEndoctendo 40117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-riotaBAD 38317
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-undef 8254  df-map 8819  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38540  df-ol 38542  df-oml 38543  df-covers 38630  df-ats 38631  df-atl 38662  df-cvlat 38686  df-hlat 38715  df-llines 38863  df-lplanes 38864  df-lvols 38865  df-lines 38866  df-psubsp 38868  df-pmap 38869  df-padd 39161  df-lhyp 39353  df-laut 39354  df-ldil 39469  df-ltrn 39470  df-trl 39524  df-tendo 40120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator