| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml9 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
| Ref | Expression |
|---|---|
| cdleml6.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleml6.j | ⊢ ∨ = (join‘𝐾) |
| cdleml6.m | ⊢ ∧ = (meet‘𝐾) |
| cdleml6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleml6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdleml6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdleml6.p | ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) |
| cdleml6.z | ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) |
| cdleml6.y | ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| cdleml6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) |
| cdleml6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) |
| cdleml6.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| cdleml6.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| cdleml9 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleml6.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdleml6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | cdleml6.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | cdleml6.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 5 | cdleml6.o | . . . 4 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | tendo1ne0 40814 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ 0 ) |
| 7 | 6 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ( I ↾ 𝑇) ≠ 0 ) |
| 8 | cdleml6.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 9 | cdleml6.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
| 10 | cdleml6.r | . . . . . . 7 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | cdleml6.p | . . . . . . 7 ⊢ 𝑄 = ((oc‘𝐾)‘𝑊) | |
| 12 | cdleml6.z | . . . . . . 7 ⊢ 𝑍 = ((𝑄 ∨ (𝑅‘𝑏)) ∧ ((ℎ‘𝑄) ∨ (𝑅‘(𝑏 ∘ ◡(𝑠‘ℎ))))) | |
| 13 | cdleml6.y | . . . . . . 7 ⊢ 𝑌 = ((𝑄 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
| 14 | cdleml6.x | . . . . . . 7 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘(𝑠‘ℎ)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑄) = 𝑌)) | |
| 15 | cdleml6.u | . . . . . . 7 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if((𝑠‘ℎ) = ℎ, 𝑔, 𝑋)) | |
| 16 | 1, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5 | cdleml8 40969 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) ∧ 𝑈 = 0 ) → (𝑈 ∘ 𝑠) = ( I ↾ 𝑇)) |
| 18 | coeq1 5829 | . . . . . 6 ⊢ (𝑈 = 0 → (𝑈 ∘ 𝑠) = ( 0 ∘ 𝑠)) | |
| 19 | simp1 1136 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 20 | simp3l 1202 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑠 ∈ 𝐸) | |
| 21 | 1, 2, 3, 4, 5 | tendo0mul 40812 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → ( 0 ∘ 𝑠) = 0 ) |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → ( 0 ∘ 𝑠) = 0 ) |
| 23 | 18, 22 | sylan9eqr 2787 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) ∧ 𝑈 = 0 ) → (𝑈 ∘ 𝑠) = 0 ) |
| 24 | 17, 23 | eqtr3d 2767 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) ∧ 𝑈 = 0 ) → ( I ↾ 𝑇) = 0 ) |
| 25 | 24 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (𝑈 = 0 → ( I ↾ 𝑇) = 0 )) |
| 26 | 25 | necon3d 2948 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → (( I ↾ 𝑇) ≠ 0 → 𝑈 ≠ 0 )) |
| 27 | 7, 26 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (ℎ ∈ 𝑇 ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 0 )) → 𝑈 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ifcif 4496 ↦ cmpt 5196 I cid 5540 ◡ccnv 5645 ↾ cres 5648 ∘ ccom 5650 ‘cfv 6519 ℩crio 7350 (class class class)co 7394 Basecbs 17185 occoc 17234 joincjn 18278 meetcmee 18279 HLchlt 39335 LHypclh 39970 LTrncltrn 40087 trLctrl 40144 TEndoctendo 40738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-riotaBAD 38938 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-undef 8261 df-map 8805 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-oposet 39161 df-ol 39163 df-oml 39164 df-covers 39251 df-ats 39252 df-atl 39283 df-cvlat 39307 df-hlat 39336 df-llines 39484 df-lplanes 39485 df-lvols 39486 df-lines 39487 df-psubsp 39489 df-pmap 39490 df-padd 39782 df-lhyp 39974 df-laut 39975 df-ldil 40090 df-ltrn 40091 df-trl 40145 df-tendo 40741 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |