![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml9 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.) |
Ref | Expression |
---|---|
cdleml6.b | β’ π΅ = (BaseβπΎ) |
cdleml6.j | β’ β¨ = (joinβπΎ) |
cdleml6.m | β’ β§ = (meetβπΎ) |
cdleml6.h | β’ π» = (LHypβπΎ) |
cdleml6.t | β’ π = ((LTrnβπΎ)βπ) |
cdleml6.r | β’ π = ((trLβπΎ)βπ) |
cdleml6.p | β’ π = ((ocβπΎ)βπ) |
cdleml6.z | β’ π = ((π β¨ (π βπ)) β§ ((ββπ) β¨ (π β(π β β‘(π ββ))))) |
cdleml6.y | β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) |
cdleml6.x | β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π βπ) β (π β(π ββ)) β§ (π βπ) β (π βπ)) β (π§βπ) = π)) |
cdleml6.u | β’ π = (π β π β¦ if((π ββ) = β, π, π)) |
cdleml6.e | β’ πΈ = ((TEndoβπΎ)βπ) |
cdleml6.o | β’ 0 = (π β π β¦ ( I βΎ π΅)) |
Ref | Expression |
---|---|
cdleml9 | β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β π β 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleml6.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | cdleml6.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | cdleml6.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
4 | cdleml6.e | . . . 4 β’ πΈ = ((TEndoβπΎ)βπ) | |
5 | cdleml6.o | . . . 4 β’ 0 = (π β π β¦ ( I βΎ π΅)) | |
6 | 1, 2, 3, 4, 5 | tendo1ne0 40193 | . . 3 β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β 0 ) |
7 | 6 | 3ad2ant1 1130 | . 2 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β ( I βΎ π) β 0 ) |
8 | cdleml6.j | . . . . . . 7 β’ β¨ = (joinβπΎ) | |
9 | cdleml6.m | . . . . . . 7 β’ β§ = (meetβπΎ) | |
10 | cdleml6.r | . . . . . . 7 β’ π = ((trLβπΎ)βπ) | |
11 | cdleml6.p | . . . . . . 7 β’ π = ((ocβπΎ)βπ) | |
12 | cdleml6.z | . . . . . . 7 β’ π = ((π β¨ (π βπ)) β§ ((ββπ) β¨ (π β(π β β‘(π ββ))))) | |
13 | cdleml6.y | . . . . . . 7 β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) | |
14 | cdleml6.x | . . . . . . 7 β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π βπ) β (π β(π ββ)) β§ (π βπ) β (π βπ)) β (π§βπ) = π)) | |
15 | cdleml6.u | . . . . . . 7 β’ π = (π β π β¦ if((π ββ) = β, π, π)) | |
16 | 1, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5 | cdleml8 40348 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β (π β π ) = ( I βΎ π)) |
17 | 16 | adantr 480 | . . . . 5 β’ ((((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β§ π = 0 ) β (π β π ) = ( I βΎ π)) |
18 | coeq1 5848 | . . . . . 6 β’ (π = 0 β (π β π ) = ( 0 β π )) | |
19 | simp1 1133 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β (πΎ β HL β§ π β π»)) | |
20 | simp3l 1198 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β π β πΈ) | |
21 | 1, 2, 3, 4, 5 | tendo0mul 40191 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β ( 0 β π ) = 0 ) |
22 | 19, 20, 21 | syl2anc 583 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β ( 0 β π ) = 0 ) |
23 | 18, 22 | sylan9eqr 2786 | . . . . 5 β’ ((((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β§ π = 0 ) β (π β π ) = 0 ) |
24 | 17, 23 | eqtr3d 2766 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β§ π = 0 ) β ( I βΎ π) = 0 ) |
25 | 24 | ex 412 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β (π = 0 β ( I βΎ π) = 0 )) |
26 | 25 | necon3d 2953 | . 2 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β (( I βΎ π) β 0 β π β 0 )) |
27 | 7, 26 | mpd 15 | 1 β’ (((πΎ β HL β§ π β π») β§ (β β π β§ β β ( I βΎ π΅)) β§ (π β πΈ β§ π β 0 )) β π β 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βwral 3053 ifcif 4521 β¦ cmpt 5222 I cid 5564 β‘ccnv 5666 βΎ cres 5669 β ccom 5671 βcfv 6534 β©crio 7357 (class class class)co 7402 Basecbs 17145 occoc 17206 joincjn 18268 meetcmee 18269 HLchlt 38714 LHypclh 39349 LTrncltrn 39466 trLctrl 39523 TEndoctendo 40117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-riotaBAD 38317 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-undef 8254 df-map 8819 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38540 df-ol 38542 df-oml 38543 df-covers 38630 df-ats 38631 df-atl 38662 df-cvlat 38686 df-hlat 38715 df-llines 38863 df-lplanes 38864 df-lvols 38865 df-lines 38866 df-psubsp 38868 df-pmap 38869 df-padd 39161 df-lhyp 39353 df-laut 39354 df-ldil 39469 df-ltrn 39470 df-trl 39524 df-tendo 40120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |