Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml9 Structured version   Visualization version   GIF version

Theorem cdleml9 38158
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
cdleml6.b 𝐵 = (Base‘𝐾)
cdleml6.j = (join‘𝐾)
cdleml6.m = (meet‘𝐾)
cdleml6.h 𝐻 = (LHyp‘𝐾)
cdleml6.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml6.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml6.p 𝑄 = ((oc‘𝐾)‘𝑊)
cdleml6.z 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
cdleml6.y 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdleml6.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
cdleml6.u 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
cdleml6.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
cdleml6.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
cdleml9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )
Distinct variable groups:   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐵,𝑏,𝑓,𝑔,𝑧   ,𝑏,𝑔,𝑧   𝑠,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑓,𝑔,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝑔,𝑍
Allowed substitution hints:   𝐵(,𝑠)   𝑄(𝑓,,𝑠)   𝑅(𝑓,,𝑠)   𝑇(,𝑠)   𝑈(𝑧,𝑓,𝑔,,𝑠,𝑏)   𝐸(𝑧,𝑓,𝑔,,𝑠,𝑏)   𝐻(𝑓,,𝑠)   (𝑓,,𝑠)   𝐾(𝑓,,𝑠)   (𝑓,,𝑠)   𝑊(𝑓,,𝑠)   𝑋(𝑧,𝑓,𝑔,,𝑠,𝑏)   𝑌(𝑓,𝑔,,𝑠,𝑏)   0 (𝑧,𝑓,𝑔,,𝑠,𝑏)   𝑍(𝑧,𝑓,,𝑠,𝑏)

Proof of Theorem cdleml9
StepHypRef Expression
1 cdleml6.b . . . 4 𝐵 = (Base‘𝐾)
2 cdleml6.h . . . 4 𝐻 = (LHyp‘𝐾)
3 cdleml6.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 cdleml6.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 cdleml6.o . . . 4 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
61, 2, 3, 4, 5tendo1ne0 38002 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 0 )
763ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → ( I ↾ 𝑇) ≠ 0 )
8 cdleml6.j . . . . . . 7 = (join‘𝐾)
9 cdleml6.m . . . . . . 7 = (meet‘𝐾)
10 cdleml6.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
11 cdleml6.p . . . . . . 7 𝑄 = ((oc‘𝐾)‘𝑊)
12 cdleml6.z . . . . . . 7 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
13 cdleml6.y . . . . . . 7 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
14 cdleml6.x . . . . . . 7 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
15 cdleml6.u . . . . . . 7 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
161, 8, 9, 2, 3, 10, 11, 12, 13, 14, 15, 4, 5cdleml8 38157 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝑈𝑠) = ( I ↾ 𝑇))
1716adantr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) ∧ 𝑈 = 0 ) → (𝑈𝑠) = ( I ↾ 𝑇))
18 coeq1 5701 . . . . . 6 (𝑈 = 0 → (𝑈𝑠) = ( 0𝑠))
19 simp1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simp3l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑠𝐸)
211, 2, 3, 4, 5tendo0mul 38000 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( 0𝑠) = 0 )
2219, 20, 21syl2anc 587 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → ( 0𝑠) = 0 )
2318, 22sylan9eqr 2878 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) ∧ 𝑈 = 0 ) → (𝑈𝑠) = 0 )
2417, 23eqtr3d 2858 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) ∧ 𝑈 = 0 ) → ( I ↾ 𝑇) = 0 )
2524ex 416 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝑈 = 0 → ( I ↾ 𝑇) = 0 ))
2625necon3d 3028 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (( I ↾ 𝑇) ≠ 0𝑈0 ))
277, 26mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  ifcif 4440  cmpt 5119   I cid 5432  ccnv 5527  cres 5530  ccom 5532  cfv 6328  crio 7087  (class class class)co 7130  Basecbs 16461  occoc 16551  joincjn 17532  meetcmee 17533  HLchlt 36524  LHypclh 37158  LTrncltrn 37275  trLctrl 37332  TEndoctendo 37926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-riotaBAD 36127
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-undef 7914  df-map 8383  df-proset 17516  df-poset 17534  df-plt 17546  df-lub 17562  df-glb 17563  df-join 17564  df-meet 17565  df-p0 17627  df-p1 17628  df-lat 17634  df-clat 17696  df-oposet 36350  df-ol 36352  df-oml 36353  df-covers 36440  df-ats 36441  df-atl 36472  df-cvlat 36496  df-hlat 36525  df-llines 36672  df-lplanes 36673  df-lvols 36674  df-lines 36675  df-psubsp 36677  df-pmap 36678  df-padd 36970  df-lhyp 37162  df-laut 37163  df-ldil 37278  df-ltrn 37279  df-trl 37333  df-tendo 37929
This theorem is referenced by:  erngdvlem4  38165  erngdvlem4-rN  38173
  Copyright terms: Public domain W3C validator