MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjadd Structured version   Visualization version   GIF version

Theorem cjadd 15190
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))

Proof of Theorem cjadd
StepHypRef Expression
1 readd 15175 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
2 imadd 15183 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
32oveq2d 7464 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 + 𝐵))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))
4 ax-icn 11243 . . . . . . 7 i ∈ ℂ
54a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6 imcl 15160 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 11318 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
9 imcl 15160 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
109adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1110recnd 11318 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
125, 8, 11adddid 11314 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) + (ℑ‘𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
133, 12eqtrd 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 + 𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
141, 13oveq12d 7466 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
15 recl 15159 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1615adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
1716recnd 11318 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
18 recl 15159 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1918adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
2019recnd 11318 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
21 mulcl 11268 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
224, 8, 21sylancr 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
23 mulcl 11268 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
244, 11, 23sylancr 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2517, 20, 22, 24addsub4d 11694 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
2614, 25eqtrd 2780 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
27 addcl 11266 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
28 remim 15166 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (∗‘(𝐴 + 𝐵)) = ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))))
2927, 28syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))))
30 remim 15166 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
31 remim 15166 . . 3 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
3230, 31oveqan12d 7467 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
3326, 29, 323eqtr4d 2790 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  ici 11186   + caddc 11187   · cmul 11189  cmin 11520  ccj 15145  cre 15146  cim 15147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150
This theorem is referenced by:  cjsub  15198  cjreim  15209  cjaddi  15237  cjaddd  15269  sqabsadd  15331  sqreulem  15408  fsumcj  15858  efcj  16140  cnsrng  21441  atancj  26971  his7  31122  sigaraf  46774
  Copyright terms: Public domain W3C validator