MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjre Structured version   Visualization version   GIF version

Theorem cjre 14846
Description: A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
cjre (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)

Proof of Theorem cjre
StepHypRef Expression
1 recn 10960 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 cjreb 14830 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
32biimpd 228 . 2 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴))
41, 3mpcom 38 1 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cfv 6431  cc 10868  cr 10869  ccj 14803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-2 12034  df-cj 14806  df-re 14807  df-im 14808
This theorem is referenced by:  cjexp  14857  cj0  14865  cjreim  14867  cjred  14933  absre  15009  absresq  15010  resinval  15840  recosval  15841  recrng  20822  rrxcph  24552  plyreres  25439  1cubrlem  25987  atandmcj  26055  atancj  26056  atanrecl  26057  dchrinv  26405  rpvmasum2  26656  dipcj  29070  hisubcomi  29460  normlem9  29474  bcseqi  29476  lnophmlem2  30373  hmopm  30377
  Copyright terms: Public domain W3C validator