MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg1 Structured version   Visualization version   GIF version

Theorem mulneg1 11548
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulneg1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg1
StepHypRef Expression
1 0cn 11099 . . . 4 0 ∈ ℂ
2 subdir 11546 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵)))
31, 2mp3an1 1450 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵)))
4 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54mul02d 11306 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
65oveq1d 7356 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 · 𝐵) − (𝐴 · 𝐵)) = (0 − (𝐴 · 𝐵)))
73, 6eqtrd 2766 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = (0 − (𝐴 · 𝐵)))
8 df-neg 11342 . . 3 -𝐴 = (0 − 𝐴)
98oveq1i 7351 . 2 (-𝐴 · 𝐵) = ((0 − 𝐴) · 𝐵)
10 df-neg 11342 . 2 -(𝐴 · 𝐵) = (0 − (𝐴 · 𝐵))
117, 9, 103eqtr4g 2791 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7341  cc 10999  0cc0 11001   · cmul 11006  cmin 11339  -cneg 11340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341  df-neg 11342
This theorem is referenced by:  mulneg2  11549  mulneg12  11550  mulm1  11553  mulneg1i  11558  mulneg1d  11565  divneg  11808  zmulcl  12516  modcyc2  13806  cjreim  15062  tanval3  16038  dvdsnegb  16179  odd2np1  16247  modgcd  16438  pcexp  16766  cnfldmulg  21335  sinperlem  26411  sineq0  26455  efeq1  26459  asinlem3a  26802  atancj  26842  atantayl  26869  atantayl2  26870  zetacvg  26947  basellem3  27015  basellem9  27021  ipval2  30679  ipasslem2  30804  itg2addnclem3  37713  ftc1anclem6  37738  stoweidlem10  46048
  Copyright terms: Public domain W3C validator