| Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sinccvg | Structured version Visualization version GIF version | ||
| Description: ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
| Ref | Expression |
|---|---|
| sinccvg | ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12893 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12621 | . . 3 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → 1 ∈ ℤ) | |
| 3 | 1rp 13010 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → 1 ∈ ℝ+) |
| 5 | eqidd 2736 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → 𝐹 ⇝ 0) | |
| 7 | 1, 2, 4, 5, 6 | climi0 15526 | . 2 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1) |
| 8 | simpll 766 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → 𝐹:ℕ⟶(ℝ ∖ {0})) | |
| 9 | simplr 768 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → 𝐹 ⇝ 0) | |
| 10 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) | |
| 11 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) | |
| 12 | simprl 770 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → 𝑗 ∈ ℕ) | |
| 13 | simprr 772 | . . . 4 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1) | |
| 14 | 2fveq3 6880 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (abs‘(𝐹‘𝑘)) = (abs‘(𝐹‘𝑛))) | |
| 15 | 14 | breq1d 5129 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((abs‘(𝐹‘𝑘)) < 1 ↔ (abs‘(𝐹‘𝑛)) < 1)) |
| 16 | 15 | rspccva 3600 | . . . 4 ⊢ ((∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (abs‘(𝐹‘𝑛)) < 1) |
| 17 | 13, 16 | sylan 580 | . . 3 ⊢ ((((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (abs‘(𝐹‘𝑛)) < 1) |
| 18 | 8, 9, 10, 11, 12, 17 | sinccvglem 35640 | . 2 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) |
| 19 | 7, 18 | rexlimddv 3147 | 1 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∖ cdif 3923 {csn 4601 class class class wbr 5119 ↦ cmpt 5201 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 < clt 11267 − cmin 11464 / cdiv 11892 ℕcn 12238 2c2 12293 3c3 12294 ℤ≥cuz 12850 ℝ+crp 13006 ↑cexp 14077 abscabs 15251 ⇝ cli 15498 sincsin 16077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-fac 14290 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cn 23163 df-cnp 23164 df-tx 23498 df-hmeo 23691 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 |
| This theorem is referenced by: circum 35642 |
| Copyright terms: Public domain | W3C validator |