| Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sinccvg | Structured version Visualization version GIF version | ||
| Description: ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
| Ref | Expression |
|---|---|
| sinccvg | ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12812 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 12540 | . . 3 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → 1 ∈ ℤ) | |
| 3 | 1rp 12931 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → 1 ∈ ℝ+) |
| 5 | eqidd 2730 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 6 | simpr 484 | . . 3 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → 𝐹 ⇝ 0) | |
| 7 | 1, 2, 4, 5, 6 | climi0 15454 | . 2 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1) |
| 8 | simpll 766 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → 𝐹:ℕ⟶(ℝ ∖ {0})) | |
| 9 | simplr 768 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → 𝐹 ⇝ 0) | |
| 10 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) | |
| 11 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) | |
| 12 | simprl 770 | . . 3 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → 𝑗 ∈ ℕ) | |
| 13 | simprr 772 | . . . 4 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1) | |
| 14 | 2fveq3 6845 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (abs‘(𝐹‘𝑘)) = (abs‘(𝐹‘𝑛))) | |
| 15 | 14 | breq1d 5112 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((abs‘(𝐹‘𝑘)) < 1 ↔ (abs‘(𝐹‘𝑛)) < 1)) |
| 16 | 15 | rspccva 3584 | . . . 4 ⊢ ((∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (abs‘(𝐹‘𝑛)) < 1) |
| 17 | 13, 16 | sylan 580 | . . 3 ⊢ ((((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (abs‘(𝐹‘𝑛)) < 1) |
| 18 | 8, 9, 10, 11, 12, 17 | sinccvglem 35632 | . 2 ⊢ (((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) ∧ (𝑗 ∈ ℕ ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 1)) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) |
| 19 | 7, 18 | rexlimddv 3140 | 1 ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 3c3 12218 ℤ≥cuz 12769 ℝ+crp 12927 ↑cexp 14002 abscabs 15176 ⇝ cli 15426 sincsin 16005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-fac 14215 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cn 23090 df-cnp 23091 df-tx 23425 df-hmeo 23618 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 |
| This theorem is referenced by: circum 35634 |
| Copyright terms: Public domain | W3C validator |