MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cru Structured version   Visualization version   GIF version

Theorem cru 11895
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cru (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem cru
StepHypRef Expression
1 simplrl 773 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℝ)
21recnd 10934 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℂ)
3 simplll 771 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℝ)
43recnd 10934 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℂ)
5 simpr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
6 ax-icn 10861 . . . . . . . . . . 11 i ∈ ℂ
76a1i 11 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → i ∈ ℂ)
8 simpllr 772 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℝ)
98recnd 10934 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℂ)
107, 9mulcld 10926 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) ∈ ℂ)
11 simplrr 774 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℝ)
1211recnd 10934 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℂ)
137, 12mulcld 10926 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐷) ∈ ℂ)
144, 10, 2, 13addsubeq4d 11313 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷))))
155, 14mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷)))
168, 11resubcld 11333 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) ∈ ℝ)
177, 9, 12subdid 11361 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = ((i · 𝐵) − (i · 𝐷)))
1817, 15eqtr4d 2781 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = (𝐶𝐴))
191, 3resubcld 11333 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) ∈ ℝ)
2018, 19eqeltrd 2839 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) ∈ ℝ)
21 rimul 11894 . . . . . . . . . . 11 (((𝐵𝐷) ∈ ℝ ∧ (i · (𝐵𝐷)) ∈ ℝ) → (𝐵𝐷) = 0)
2216, 20, 21syl2anc 583 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) = 0)
239, 12, 22subeq0d 11270 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 = 𝐷)
2423oveq2d 7271 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) = (i · 𝐷))
2524oveq1d 7270 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐵) − (i · 𝐷)) = ((i · 𝐷) − (i · 𝐷)))
2613subidd 11250 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐷) − (i · 𝐷)) = 0)
2715, 25, 263eqtrd 2782 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = 0)
282, 4, 27subeq0d 11270 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 = 𝐴)
2928eqcomd 2744 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 = 𝐶)
3029, 23jca 511 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
3130ex 412 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
32 oveq2 7263 . . 3 (𝐵 = 𝐷 → (i · 𝐵) = (i · 𝐷))
33 oveq12 7264 . . 3 ((𝐴 = 𝐶 ∧ (i · 𝐵) = (i · 𝐷)) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3432, 33sylan2 592 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3531, 34impbid1 224 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  crne0  11896  creur  11897  creui  11898  cnref1o  12654  efieq  15800
  Copyright terms: Public domain W3C validator