![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac12 | Structured version Visualization version GIF version |
Description: The axiom of choice holds iff every aleph has a well-orderable powerset. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
dfac12 | ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac12a 9305 | . 2 ⊢ (CHOICE ↔ ∀𝑦 ∈ On 𝒫 𝑦 ∈ dom card) | |
2 | dfac12k 9304 | . 2 ⊢ (∀𝑦 ∈ On 𝒫 𝑦 ∈ dom card ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card) | |
3 | 1, 2 | bitri 267 | 1 ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2106 ∀wral 3089 𝒫 cpw 4378 dom cdm 5355 Oncon0 5976 ‘cfv 6135 cardccrd 9094 ℵcale 9095 CHOICEwac 9271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-reg 8786 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-omul 7848 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-oi 8704 df-har 8752 df-r1 8924 df-rank 8925 df-card 9098 df-aleph 9099 df-ac 9272 |
This theorem is referenced by: gch2 9832 |
Copyright terms: Public domain | W3C validator |