![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfac12a | Structured version Visualization version GIF version |
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
dfac12a | ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4003 | . . . 4 ⊢ dom card ⊆ V | |
2 | eqss 3994 | . . . 4 ⊢ (dom card = V ↔ (dom card ⊆ V ∧ V ⊆ dom card)) | |
3 | 1, 2 | mpbiran 707 | . . 3 ⊢ (dom card = V ↔ V ⊆ dom card) |
4 | dfac10 10173 | . . 3 ⊢ (CHOICE ↔ dom card = V) | |
5 | unir1 9849 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
6 | 5 | sseq1i 4007 | . . 3 ⊢ (∪ (𝑅1 “ On) ⊆ dom card ↔ V ⊆ dom card) |
7 | 3, 4, 6 | 3bitr4i 302 | . 2 ⊢ (CHOICE ↔ ∪ (𝑅1 “ On) ⊆ dom card) |
8 | dfac12r 10182 | . 2 ⊢ (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ (𝑅1 “ On) ⊆ dom card) | |
9 | 7, 8 | bitr4i 277 | 1 ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 ⊆ wss 3946 𝒫 cpw 4597 ∪ cuni 4905 dom cdm 5674 “ cima 5677 Oncon0 6368 𝑅1cr1 9798 cardccrd 9971 CHOICEwac 10151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-reg 9628 ax-inf2 9677 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-oadd 8492 df-omul 8493 df-er 8726 df-en 8967 df-dom 8968 df-oi 9546 df-har 9593 df-r1 9800 df-rank 9801 df-card 9975 df-ac 10152 |
This theorem is referenced by: dfac12 10185 |
Copyright terms: Public domain | W3C validator |