MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12a Structured version   Visualization version   GIF version

Theorem dfac12a 10092
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12a (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)

Proof of Theorem dfac12a
StepHypRef Expression
1 ssv 3972 . . . 4 dom card ⊆ V
2 eqss 3963 . . . 4 (dom card = V ↔ (dom card ⊆ V ∧ V ⊆ dom card))
31, 2mpbiran 708 . . 3 (dom card = V ↔ V ⊆ dom card)
4 dfac10 10081 . . 3 (CHOICE ↔ dom card = V)
5 unir1 9757 . . . 4 (𝑅1 “ On) = V
65sseq1i 3976 . . 3 ( (𝑅1 “ On) ⊆ dom card ↔ V ⊆ dom card)
73, 4, 63bitr4i 303 . 2 (CHOICE (𝑅1 “ On) ⊆ dom card)
8 dfac12r 10090 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
97, 8bitr4i 278 1 (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wcel 2107  wral 3061  Vcvv 3447  wss 3914  𝒫 cpw 4564   cuni 4869  dom cdm 5637  cima 5640  Oncon0 6321  𝑅1cr1 9706  cardccrd 9879  CHOICEwac 10059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-reg 9536  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-oadd 8420  df-omul 8421  df-er 8654  df-en 8890  df-dom 8891  df-oi 9454  df-har 9501  df-r1 9708  df-rank 9709  df-card 9883  df-ac 10060
This theorem is referenced by:  dfac12  10093
  Copyright terms: Public domain W3C validator