MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12a Structured version   Visualization version   GIF version

Theorem dfac12a 10051
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12a (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)

Proof of Theorem dfac12a
StepHypRef Expression
1 ssv 3955 . . . 4 dom card ⊆ V
2 eqss 3946 . . . 4 (dom card = V ↔ (dom card ⊆ V ∧ V ⊆ dom card))
31, 2mpbiran 709 . . 3 (dom card = V ↔ V ⊆ dom card)
4 dfac10 10040 . . 3 (CHOICE ↔ dom card = V)
5 unir1 9717 . . . 4 (𝑅1 “ On) = V
65sseq1i 3959 . . 3 ( (𝑅1 “ On) ⊆ dom card ↔ V ⊆ dom card)
73, 4, 63bitr4i 303 . 2 (CHOICE (𝑅1 “ On) ⊆ dom card)
8 dfac12r 10049 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
97, 8bitr4i 278 1 (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  𝒫 cpw 4551   cuni 4860  dom cdm 5621  cima 5624  Oncon0 6314  𝑅1cr1 9666  cardccrd 9839  CHOICEwac 10017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9489  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-oadd 8398  df-omul 8399  df-er 8631  df-en 8880  df-dom 8881  df-oi 9407  df-har 9454  df-r1 9668  df-rank 9669  df-card 9843  df-ac 10018
This theorem is referenced by:  dfac12  10052
  Copyright terms: Public domain W3C validator