Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac12a | Structured version Visualization version GIF version |
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
dfac12a | ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3950 | . . . 4 ⊢ dom card ⊆ V | |
2 | eqss 3941 | . . . 4 ⊢ (dom card = V ↔ (dom card ⊆ V ∧ V ⊆ dom card)) | |
3 | 1, 2 | mpbiran 706 | . . 3 ⊢ (dom card = V ↔ V ⊆ dom card) |
4 | dfac10 9892 | . . 3 ⊢ (CHOICE ↔ dom card = V) | |
5 | unir1 9570 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
6 | 5 | sseq1i 3954 | . . 3 ⊢ (∪ (𝑅1 “ On) ⊆ dom card ↔ V ⊆ dom card) |
7 | 3, 4, 6 | 3bitr4i 303 | . 2 ⊢ (CHOICE ↔ ∪ (𝑅1 “ On) ⊆ dom card) |
8 | dfac12r 9901 | . 2 ⊢ (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ (𝑅1 “ On) ⊆ dom card) | |
9 | 7, 8 | bitr4i 277 | 1 ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4845 dom cdm 5589 “ cima 5592 Oncon0 6264 𝑅1cr1 9519 cardccrd 9692 CHOICEwac 9870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-reg 9327 ax-inf2 9375 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-oadd 8290 df-omul 8291 df-er 8479 df-en 8715 df-dom 8716 df-oi 9245 df-har 9292 df-r1 9521 df-rank 9522 df-card 9696 df-ac 9871 |
This theorem is referenced by: dfac12 9904 |
Copyright terms: Public domain | W3C validator |