| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfac12a | Structured version Visualization version GIF version | ||
| Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| dfac12a | ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3968 | . . . 4 ⊢ dom card ⊆ V | |
| 2 | eqss 3959 | . . . 4 ⊢ (dom card = V ↔ (dom card ⊆ V ∧ V ⊆ dom card)) | |
| 3 | 1, 2 | mpbiran 709 | . . 3 ⊢ (dom card = V ↔ V ⊆ dom card) |
| 4 | dfac10 10067 | . . 3 ⊢ (CHOICE ↔ dom card = V) | |
| 5 | unir1 9742 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
| 6 | 5 | sseq1i 3972 | . . 3 ⊢ (∪ (𝑅1 “ On) ⊆ dom card ↔ V ⊆ dom card) |
| 7 | 3, 4, 6 | 3bitr4i 303 | . 2 ⊢ (CHOICE ↔ ∪ (𝑅1 “ On) ⊆ dom card) |
| 8 | dfac12r 10076 | . 2 ⊢ (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ (𝑅1 “ On) ⊆ dom card) | |
| 9 | 7, 8 | bitr4i 278 | 1 ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 dom cdm 5631 “ cima 5634 Oncon0 6320 𝑅1cr1 9691 cardccrd 9864 CHOICEwac 10044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 df-omul 8416 df-er 8648 df-en 8896 df-dom 8897 df-oi 9439 df-har 9486 df-r1 9693 df-rank 9694 df-card 9868 df-ac 10045 |
| This theorem is referenced by: dfac12 10079 |
| Copyright terms: Public domain | W3C validator |