MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1div1e1 Structured version   Visualization version   GIF version

Theorem 1div1e1 11807
Description: 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
1div1e1 (1 / 1) = 1

Proof of Theorem 1div1e1
StepHypRef Expression
1 ax-1cn 11059 . 2 1 ∈ ℂ
2 div1 11806 . 2 (1 ∈ ℂ → (1 / 1) = 1)
31, 2ax-mp 5 1 (1 / 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7341  cc 10999  1c1 11002   / cdiv 11769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770
This theorem is referenced by:  recdiv  11822  reclt1  12012  recgt1  12013  halflt1  12333  expneg  13971  m1expcl2  13987  1exp  13993  resqrex  15152  trireciplem  15764  fproddiv  15863  ef0lem  15980  eft0val  16016  m1expaddsub  19405  gzrngunit  21365  cnmsgnsubg  21509  psgninv  21514  vitali  25536  advlogexp  26586  logtayllem  26590  efrlim  26901  efrlimOLD  26902  emcllem2  26929  emcllem7  26934  logexprlim  27158  dchrinvcl  27186  bclbnd  27213  lgseisenlem1  27308  lgseisenlem2  27309  lgsquadlem1  27313  dchrmusum2  27427  dchrvmasum2lem  27429  mulogsum  27465  pntrsumo1  27498  pnt2  27546  pnt  27547  qqh1  33990  faclimlem1  35779  faclim  35782  pellexlem2  42863  elpell1qr2  42905  bccn0  44376  binomcxplemradcnv  44385  mccl  45638  dvnprodlem3  45986  stoweidlem13  46051  stoweidlem42  46080  fourierdlem62  46206  iinhoiicclem  46711  sec0  49792
  Copyright terms: Public domain W3C validator