MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1div1e1 Structured version   Visualization version   GIF version

Theorem 1div1e1 11908
Description: 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
1div1e1 (1 / 1) = 1

Proof of Theorem 1div1e1
StepHypRef Expression
1 ax-1cn 11170 . 2 1 ∈ ℂ
2 div1 11907 . 2 (1 ∈ ℂ → (1 / 1) = 1)
31, 2ax-mp 5 1 (1 / 1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  (class class class)co 7411  cc 11110  1c1 11113   / cdiv 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876
This theorem is referenced by:  recdiv  11924  reclt1  12113  recgt1  12114  halflt1  12434  expneg  14039  m1expcl2  14055  1exp  14061  resqrex  15201  trireciplem  15812  fproddiv  15909  ef0lem  16026  eft0val  16059  m1expaddsub  19407  gzrngunit  21211  cnmsgnsubg  21349  psgninv  21354  vitali  25362  advlogexp  26399  logtayllem  26403  efrlim  26710  emcllem2  26737  emcllem7  26742  logexprlim  26964  dchrinvcl  26992  bclbnd  27019  lgseisenlem1  27114  lgseisenlem2  27115  lgsquadlem1  27119  dchrmusum2  27233  dchrvmasum2lem  27235  mulogsum  27271  pntrsumo1  27304  pnt2  27352  pnt  27353  qqh1  33263  faclimlem1  35017  faclim  35020  pellexlem2  41870  elpell1qr2  41912  bccn0  43404  binomcxplemradcnv  43413  mccl  44612  dvnprodlem3  44962  stoweidlem13  45027  stoweidlem42  45056  fourierdlem62  45182  iinhoiicclem  45687  sec0  47892
  Copyright terms: Public domain W3C validator