| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1div1e1 | Structured version Visualization version GIF version | ||
| Description: 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1div1e1 | ⊢ (1 / 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11059 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | div1 11806 | . 2 ⊢ (1 ∈ ℂ → (1 / 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 / 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 1c1 11002 / cdiv 11769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 |
| This theorem is referenced by: recdiv 11822 reclt1 12012 recgt1 12013 halflt1 12333 expneg 13971 m1expcl2 13987 1exp 13993 resqrex 15152 trireciplem 15764 fproddiv 15863 ef0lem 15980 eft0val 16016 m1expaddsub 19405 gzrngunit 21365 cnmsgnsubg 21509 psgninv 21514 vitali 25536 advlogexp 26586 logtayllem 26590 efrlim 26901 efrlimOLD 26902 emcllem2 26929 emcllem7 26934 logexprlim 27158 dchrinvcl 27186 bclbnd 27213 lgseisenlem1 27308 lgseisenlem2 27309 lgsquadlem1 27313 dchrmusum2 27427 dchrvmasum2lem 27429 mulogsum 27465 pntrsumo1 27498 pnt2 27546 pnt 27547 qqh1 33990 faclimlem1 35779 faclim 35782 pellexlem2 42863 elpell1qr2 42905 bccn0 44376 binomcxplemradcnv 44385 mccl 45638 dvnprodlem3 45986 stoweidlem13 46051 stoweidlem42 46080 fourierdlem62 46206 iinhoiicclem 46711 sec0 49792 |
| Copyright terms: Public domain | W3C validator |