| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1div1e1 | Structured version Visualization version GIF version | ||
| Description: 1 divided by 1 is 1. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1div1e1 | ⊢ (1 / 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11075 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | div1 11822 | . 2 ⊢ (1 ∈ ℂ → (1 / 1) = 1) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (1 / 1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 1c1 11018 / cdiv 11785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 |
| This theorem is referenced by: recdiv 11838 reclt1 12028 recgt1 12029 halflt1 12349 expneg 13983 m1expcl2 13999 1exp 14005 resqrex 15164 trireciplem 15776 fproddiv 15875 ef0lem 15992 eft0val 16028 m1expaddsub 19418 gzrngunit 21379 cnmsgnsubg 21523 psgninv 21528 vitali 25561 advlogexp 26611 logtayllem 26615 efrlim 26926 efrlimOLD 26927 emcllem2 26954 emcllem7 26959 logexprlim 27183 dchrinvcl 27211 bclbnd 27238 lgseisenlem1 27333 lgseisenlem2 27334 lgsquadlem1 27338 dchrmusum2 27452 dchrvmasum2lem 27454 mulogsum 27490 pntrsumo1 27523 pnt2 27571 pnt 27572 qqh1 34070 faclimlem1 35859 faclim 35862 pellexlem2 42987 elpell1qr2 43029 bccn0 44500 binomcxplemradcnv 44509 mccl 45760 dvnprodlem3 46108 stoweidlem13 46173 stoweidlem42 46202 fourierdlem62 46328 iinhoiicclem 46833 sec0 49921 |
| Copyright terms: Public domain | W3C validator |