Proof of Theorem logneg2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | imcl 15151 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) | 
| 2 |  | gt0ne0 11729 | . . . . . . . 8
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0) | 
| 3 | 1, 2 | sylan 580 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘𝐴) ≠
0) | 
| 4 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝐴 = 0 → (ℑ‘𝐴) =
(ℑ‘0)) | 
| 5 |  | im0 15193 | . . . . . . . . 9
⊢
(ℑ‘0) = 0 | 
| 6 | 4, 5 | eqtrdi 2792 | . . . . . . . 8
⊢ (𝐴 = 0 → (ℑ‘𝐴) = 0) | 
| 7 | 6 | necon3i 2972 | . . . . . . 7
⊢
((ℑ‘𝐴)
≠ 0 → 𝐴 ≠
0) | 
| 8 | 3, 7 | syl 17 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
𝐴 ≠ 0) | 
| 9 |  | logcl 26611 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) | 
| 10 | 8, 9 | syldan 591 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘𝐴) ∈
ℂ) | 
| 11 |  | ax-icn 11215 | . . . . . 6
⊢ i ∈
ℂ | 
| 12 |  | picn 26502 | . . . . . 6
⊢ π
∈ ℂ | 
| 13 | 11, 12 | mulcli 11269 | . . . . 5
⊢ (i
· π) ∈ ℂ | 
| 14 |  | efsub 16137 | . . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
(exp‘((log‘𝐴)
− (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i ·
π)))) | 
| 15 | 10, 13, 14 | sylancl 586 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘((log‘𝐴)
− (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i ·
π)))) | 
| 16 |  | eflog 26619 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) | 
| 17 | 8, 16 | syldan 591 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(log‘𝐴)) =
𝐴) | 
| 18 |  | efipi 26516 | . . . . . 6
⊢
(exp‘(i · π)) = -1 | 
| 19 | 18 | a1i 11 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(i · π)) = -1) | 
| 20 | 17, 19 | oveq12d 7450 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((exp‘(log‘𝐴))
/ (exp‘(i · π))) = (𝐴 / -1)) | 
| 21 |  | ax-1cn 11214 | . . . . . . 7
⊢ 1 ∈
ℂ | 
| 22 |  | ax-1ne0 11225 | . . . . . . 7
⊢ 1 ≠
0 | 
| 23 |  | divneg2 11992 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1)) | 
| 24 | 21, 22, 23 | mp3an23 1454 | . . . . . 6
⊢ (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1)) | 
| 25 |  | div1 11958 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | 
| 26 | 25 | negeqd 11503 | . . . . . 6
⊢ (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴) | 
| 27 | 24, 26 | eqtr3d 2778 | . . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴) | 
| 28 | 27 | adantr 480 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(𝐴 / -1) = -𝐴) | 
| 29 | 15, 20, 28 | 3eqtrd 2780 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘((log‘𝐴)
− (i · π))) = -𝐴) | 
| 30 | 29 | fveq2d 6909 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
(log‘-𝐴)) | 
| 31 |  | subcl 11508 | . . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π))
∈ ℂ) | 
| 32 | 10, 13, 31 | sylancl 586 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((log‘𝐴) − (i
· π)) ∈ ℂ) | 
| 33 |  | argimgt0 26655 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (0(,)π)) | 
| 34 |  | eliooord 13447 | . . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) | 
| 35 | 33, 34 | syl 17 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) | 
| 36 | 35 | simpld 494 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘(log‘𝐴))) | 
| 37 |  | imcl 15151 | . . . . . . . . 9
⊢
((log‘𝐴)
∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ) | 
| 38 | 10, 37 | syl 17 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) | 
| 39 |  | pire 26501 | . . . . . . . . 9
⊢ π
∈ ℝ | 
| 40 | 39 | renegcli 11571 | . . . . . . . 8
⊢ -π
∈ ℝ | 
| 41 |  | ltaddpos2 11755 | . . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈
ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π <
((ℑ‘(log‘𝐴)) + -π))) | 
| 42 | 38, 40, 41 | sylancl 586 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ↔ -π <
((ℑ‘(log‘𝐴)) + -π))) | 
| 43 | 36, 42 | mpbid 232 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) + -π)) | 
| 44 | 38 | recnd 11290 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) | 
| 45 |  | negsub 11558 | . . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ)
→ ((ℑ‘(log‘𝐴)) + -π) =
((ℑ‘(log‘𝐴)) − π)) | 
| 46 | 44, 12, 45 | sylancl 586 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) + -π) =
((ℑ‘(log‘𝐴)) − π)) | 
| 47 | 43, 46 | breqtrd 5168 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) − π)) | 
| 48 |  | imsub 15175 | . . . . . . 7
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π)))) | 
| 49 | 10, 13, 48 | sylancl 586 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π)))) | 
| 50 |  | reim 15149 | . . . . . . . . 9
⊢ (π
∈ ℂ → (ℜ‘π) = (ℑ‘(i ·
π))) | 
| 51 | 12, 50 | ax-mp 5 | . . . . . . . 8
⊢
(ℜ‘π) = (ℑ‘(i · π)) | 
| 52 |  | rere 15162 | . . . . . . . . 9
⊢ (π
∈ ℝ → (ℜ‘π) = π) | 
| 53 | 39, 52 | ax-mp 5 | . . . . . . . 8
⊢
(ℜ‘π) = π | 
| 54 | 51, 53 | eqtr3i 2766 | . . . . . . 7
⊢
(ℑ‘(i · π)) = π | 
| 55 | 54 | oveq2i 7443 | . . . . . 6
⊢
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π))) = ((ℑ‘(log‘𝐴)) − π) | 
| 56 | 49, 55 | eqtrdi 2792 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − π)) | 
| 57 | 47, 56 | breqtrrd 5170 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < (ℑ‘((log‘𝐴) − (i ·
π)))) | 
| 58 |  | resubcl 11574 | . . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((ℑ‘(log‘𝐴)) − π) ∈
ℝ) | 
| 59 | 38, 39, 58 | sylancl 586 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ∈
ℝ) | 
| 60 | 39 | a1i 11 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
π ∈ ℝ) | 
| 61 |  | 0re 11264 | . . . . . . . 8
⊢ 0 ∈
ℝ | 
| 62 |  | pipos 26503 | . . . . . . . 8
⊢ 0 <
π | 
| 63 | 61, 39, 62 | ltleii 11385 | . . . . . . 7
⊢ 0 ≤
π | 
| 64 |  | subge02 11780 | . . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴)))) | 
| 65 | 38, 39, 64 | sylancl 586 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴)))) | 
| 66 | 63, 65 | mpbii 233 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴))) | 
| 67 |  | logimcl 26612 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | 
| 68 | 8, 67 | syldan 591 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) | 
| 69 | 68 | simprd 495 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ π) | 
| 70 | 59, 38, 60, 66, 69 | letrd 11419 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ≤ π) | 
| 71 | 56, 70 | eqbrtrd 5164 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) ≤
π) | 
| 72 |  | ellogrn 26602 | . . . 4
⊢
(((log‘𝐴)
− (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ
∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧
(ℑ‘((log‘𝐴) − (i · π))) ≤
π)) | 
| 73 | 32, 57, 71, 72 | syl3anbrc 1343 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((log‘𝐴) − (i
· π)) ∈ ran log) | 
| 74 |  | logef 26624 | . . 3
⊢
(((log‘𝐴)
− (i · π)) ∈ ran log →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
((log‘𝐴) − (i
· π))) | 
| 75 | 73, 74 | syl 17 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
((log‘𝐴) − (i
· π))) | 
| 76 | 30, 75 | eqtr3d 2778 | 1
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘-𝐴) =
((log‘𝐴) − (i
· π))) |