MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logneg2 Structured version   Visualization version   GIF version

Theorem logneg2 25770
Description: The logarithm of the negative of a number with positive imaginary part is i · π less than the original. (Compare logneg 25743.) (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
logneg2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))

Proof of Theorem logneg2
StepHypRef Expression
1 imcl 14822 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11440 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6774 . . . . . . . . 9 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 14864 . . . . . . . . 9 (ℑ‘0) = 0
64, 5eqtrdi 2794 . . . . . . . 8 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2976 . . . . . . 7 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 25724 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
11 ax-icn 10930 . . . . . 6 i ∈ ℂ
12 picn 25616 . . . . . 6 π ∈ ℂ
1311, 12mulcli 10982 . . . . 5 (i · π) ∈ ℂ
14 efsub 15809 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
1510, 13, 14sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
16 eflog 25732 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
178, 16syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
18 efipi 25630 . . . . . 6 (exp‘(i · π)) = -1
1918a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · π)) = -1)
2017, 19oveq12d 7293 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((exp‘(log‘𝐴)) / (exp‘(i · π))) = (𝐴 / -1))
21 ax-1cn 10929 . . . . . . 7 1 ∈ ℂ
22 ax-1ne0 10940 . . . . . . 7 1 ≠ 0
23 divneg2 11699 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1))
2421, 22, 23mp3an23 1452 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1))
25 div1 11664 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2625negeqd 11215 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴)
2724, 26eqtr3d 2780 . . . . 5 (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴)
2827adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / -1) = -𝐴)
2915, 20, 283eqtrd 2782 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = -𝐴)
3029fveq2d 6778 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = (log‘-𝐴))
31 subcl 11220 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π)) ∈ ℂ)
3210, 13, 31sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ℂ)
33 argimgt0 25767 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
34 eliooord 13138 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3533, 34syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3635simpld 495 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
37 imcl 14822 . . . . . . . . 9 ((log‘𝐴) ∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ)
3810, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
39 pire 25615 . . . . . . . . 9 π ∈ ℝ
4039renegcli 11282 . . . . . . . 8 -π ∈ ℝ
41 ltaddpos2 11466 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4238, 40, 41sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4336, 42mpbid 231 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + -π))
4438recnd 11003 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
45 negsub 11269 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4644, 12, 45sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4743, 46breqtrd 5100 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) − π))
48 imsub 14846 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
4910, 13, 48sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
50 reim 14820 . . . . . . . . 9 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
5112, 50ax-mp 5 . . . . . . . 8 (ℜ‘π) = (ℑ‘(i · π))
52 rere 14833 . . . . . . . . 9 (π ∈ ℝ → (ℜ‘π) = π)
5339, 52ax-mp 5 . . . . . . . 8 (ℜ‘π) = π
5451, 53eqtr3i 2768 . . . . . . 7 (ℑ‘(i · π)) = π
5554oveq2i 7286 . . . . . 6 ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))) = ((ℑ‘(log‘𝐴)) − π)
5649, 55eqtrdi 2794 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − π))
5747, 56breqtrrd 5102 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘((log‘𝐴) − (i · π))))
58 resubcl 11285 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
5938, 39, 58sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
6039a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
61 0re 10977 . . . . . . . 8 0 ∈ ℝ
62 pipos 25617 . . . . . . . 8 0 < π
6361, 39, 62ltleii 11098 . . . . . . 7 0 ≤ π
64 subge02 11491 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6538, 39, 64sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6663, 65mpbii 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴)))
67 logimcl 25725 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
688, 67syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
6968simprd 496 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
7059, 38, 60, 66, 69letrd 11132 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ π)
7156, 70eqbrtrd 5096 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) ≤ π)
72 ellogrn 25715 . . . 4 (((log‘𝐴) − (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧ (ℑ‘((log‘𝐴) − (i · π))) ≤ π))
7332, 57, 71, 72syl3anbrc 1342 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ran log)
74 logef 25737 . . 3 (((log‘𝐴) − (i · π)) ∈ ran log → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7573, 74syl 17 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7630, 75eqtr3d 2780 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  (,)cioo 13079  cre 14808  cim 14809  expce 15771  πcpi 15776  logclog 25710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712
This theorem is referenced by:  atanlogsublem  26065
  Copyright terms: Public domain W3C validator