Proof of Theorem logneg2
| Step | Hyp | Ref
| Expression |
| 1 | | imcl 15135 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) |
| 2 | | gt0ne0 11707 |
. . . . . . . 8
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0) |
| 3 | 1, 2 | sylan 580 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘𝐴) ≠
0) |
| 4 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (ℑ‘𝐴) =
(ℑ‘0)) |
| 5 | | im0 15177 |
. . . . . . . . 9
⊢
(ℑ‘0) = 0 |
| 6 | 4, 5 | eqtrdi 2787 |
. . . . . . . 8
⊢ (𝐴 = 0 → (ℑ‘𝐴) = 0) |
| 7 | 6 | necon3i 2965 |
. . . . . . 7
⊢
((ℑ‘𝐴)
≠ 0 → 𝐴 ≠
0) |
| 8 | 3, 7 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
𝐴 ≠ 0) |
| 9 | | logcl 26534 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
| 10 | 8, 9 | syldan 591 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘𝐴) ∈
ℂ) |
| 11 | | ax-icn 11193 |
. . . . . 6
⊢ i ∈
ℂ |
| 12 | | picn 26424 |
. . . . . 6
⊢ π
∈ ℂ |
| 13 | 11, 12 | mulcli 11247 |
. . . . 5
⊢ (i
· π) ∈ ℂ |
| 14 | | efsub 16123 |
. . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
(exp‘((log‘𝐴)
− (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i ·
π)))) |
| 15 | 10, 13, 14 | sylancl 586 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘((log‘𝐴)
− (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i ·
π)))) |
| 16 | | eflog 26542 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) |
| 17 | 8, 16 | syldan 591 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(log‘𝐴)) =
𝐴) |
| 18 | | efipi 26439 |
. . . . . 6
⊢
(exp‘(i · π)) = -1 |
| 19 | 18 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(i · π)) = -1) |
| 20 | 17, 19 | oveq12d 7428 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((exp‘(log‘𝐴))
/ (exp‘(i · π))) = (𝐴 / -1)) |
| 21 | | ax-1cn 11192 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 22 | | ax-1ne0 11203 |
. . . . . . 7
⊢ 1 ≠
0 |
| 23 | | divneg2 11970 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1)) |
| 24 | 21, 22, 23 | mp3an23 1455 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1)) |
| 25 | | div1 11936 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) |
| 26 | 25 | negeqd 11481 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴) |
| 27 | 24, 26 | eqtr3d 2773 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴) |
| 28 | 27 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(𝐴 / -1) = -𝐴) |
| 29 | 15, 20, 28 | 3eqtrd 2775 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘((log‘𝐴)
− (i · π))) = -𝐴) |
| 30 | 29 | fveq2d 6885 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
(log‘-𝐴)) |
| 31 | | subcl 11486 |
. . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π))
∈ ℂ) |
| 32 | 10, 13, 31 | sylancl 586 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((log‘𝐴) − (i
· π)) ∈ ℂ) |
| 33 | | argimgt0 26578 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (0(,)π)) |
| 34 | | eliooord 13427 |
. . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) |
| 36 | 35 | simpld 494 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘(log‘𝐴))) |
| 37 | | imcl 15135 |
. . . . . . . . 9
⊢
((log‘𝐴)
∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ) |
| 38 | 10, 37 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
| 39 | | pire 26423 |
. . . . . . . . 9
⊢ π
∈ ℝ |
| 40 | 39 | renegcli 11549 |
. . . . . . . 8
⊢ -π
∈ ℝ |
| 41 | | ltaddpos2 11733 |
. . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈
ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π <
((ℑ‘(log‘𝐴)) + -π))) |
| 42 | 38, 40, 41 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ↔ -π <
((ℑ‘(log‘𝐴)) + -π))) |
| 43 | 36, 42 | mpbid 232 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) + -π)) |
| 44 | 38 | recnd 11268 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
| 45 | | negsub 11536 |
. . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ)
→ ((ℑ‘(log‘𝐴)) + -π) =
((ℑ‘(log‘𝐴)) − π)) |
| 46 | 44, 12, 45 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) + -π) =
((ℑ‘(log‘𝐴)) − π)) |
| 47 | 43, 46 | breqtrd 5150 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) − π)) |
| 48 | | imsub 15159 |
. . . . . . 7
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π)))) |
| 49 | 10, 13, 48 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π)))) |
| 50 | | reim 15133 |
. . . . . . . . 9
⊢ (π
∈ ℂ → (ℜ‘π) = (ℑ‘(i ·
π))) |
| 51 | 12, 50 | ax-mp 5 |
. . . . . . . 8
⊢
(ℜ‘π) = (ℑ‘(i · π)) |
| 52 | | rere 15146 |
. . . . . . . . 9
⊢ (π
∈ ℝ → (ℜ‘π) = π) |
| 53 | 39, 52 | ax-mp 5 |
. . . . . . . 8
⊢
(ℜ‘π) = π |
| 54 | 51, 53 | eqtr3i 2761 |
. . . . . . 7
⊢
(ℑ‘(i · π)) = π |
| 55 | 54 | oveq2i 7421 |
. . . . . 6
⊢
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π))) = ((ℑ‘(log‘𝐴)) − π) |
| 56 | 49, 55 | eqtrdi 2787 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − π)) |
| 57 | 47, 56 | breqtrrd 5152 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < (ℑ‘((log‘𝐴) − (i ·
π)))) |
| 58 | | resubcl 11552 |
. . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((ℑ‘(log‘𝐴)) − π) ∈
ℝ) |
| 59 | 38, 39, 58 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ∈
ℝ) |
| 60 | 39 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
π ∈ ℝ) |
| 61 | | 0re 11242 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
| 62 | | pipos 26425 |
. . . . . . . 8
⊢ 0 <
π |
| 63 | 61, 39, 62 | ltleii 11363 |
. . . . . . 7
⊢ 0 ≤
π |
| 64 | | subge02 11758 |
. . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴)))) |
| 65 | 38, 39, 64 | sylancl 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴)))) |
| 66 | 63, 65 | mpbii 233 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴))) |
| 67 | | logimcl 26535 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
| 68 | 8, 67 | syldan 591 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
| 69 | 68 | simprd 495 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ π) |
| 70 | 59, 38, 60, 66, 69 | letrd 11397 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ≤ π) |
| 71 | 56, 70 | eqbrtrd 5146 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) ≤
π) |
| 72 | | ellogrn 26525 |
. . . 4
⊢
(((log‘𝐴)
− (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ
∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧
(ℑ‘((log‘𝐴) − (i · π))) ≤
π)) |
| 73 | 32, 57, 71, 72 | syl3anbrc 1344 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((log‘𝐴) − (i
· π)) ∈ ran log) |
| 74 | | logef 26547 |
. . 3
⊢
(((log‘𝐴)
− (i · π)) ∈ ran log →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
((log‘𝐴) − (i
· π))) |
| 75 | 73, 74 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
((log‘𝐴) − (i
· π))) |
| 76 | 30, 75 | eqtr3d 2773 |
1
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘-𝐴) =
((log‘𝐴) − (i
· π))) |