Proof of Theorem logneg2
Step | Hyp | Ref
| Expression |
1 | | imcl 14518 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) |
2 | | gt0ne0 11143 |
. . . . . . . 8
⊢
(((ℑ‘𝐴)
∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0) |
3 | 1, 2 | sylan 583 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘𝐴) ≠
0) |
4 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (ℑ‘𝐴) =
(ℑ‘0)) |
5 | | im0 14560 |
. . . . . . . . 9
⊢
(ℑ‘0) = 0 |
6 | 4, 5 | eqtrdi 2809 |
. . . . . . . 8
⊢ (𝐴 = 0 → (ℑ‘𝐴) = 0) |
7 | 6 | necon3i 2983 |
. . . . . . 7
⊢
((ℑ‘𝐴)
≠ 0 → 𝐴 ≠
0) |
8 | 3, 7 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
𝐴 ≠ 0) |
9 | | logcl 25259 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
10 | 8, 9 | syldan 594 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘𝐴) ∈
ℂ) |
11 | | ax-icn 10634 |
. . . . . 6
⊢ i ∈
ℂ |
12 | | picn 25151 |
. . . . . 6
⊢ π
∈ ℂ |
13 | 11, 12 | mulcli 10686 |
. . . . 5
⊢ (i
· π) ∈ ℂ |
14 | | efsub 15501 |
. . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
(exp‘((log‘𝐴)
− (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i ·
π)))) |
15 | 10, 13, 14 | sylancl 589 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘((log‘𝐴)
− (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i ·
π)))) |
16 | | eflog 25267 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) |
17 | 8, 16 | syldan 594 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(log‘𝐴)) =
𝐴) |
18 | | efipi 25165 |
. . . . . 6
⊢
(exp‘(i · π)) = -1 |
19 | 18 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘(i · π)) = -1) |
20 | 17, 19 | oveq12d 7168 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((exp‘(log‘𝐴))
/ (exp‘(i · π))) = (𝐴 / -1)) |
21 | | ax-1cn 10633 |
. . . . . . 7
⊢ 1 ∈
ℂ |
22 | | ax-1ne0 10644 |
. . . . . . 7
⊢ 1 ≠
0 |
23 | | divneg2 11402 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1)) |
24 | 21, 22, 23 | mp3an23 1450 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1)) |
25 | | div1 11367 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) |
26 | 25 | negeqd 10918 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴) |
27 | 24, 26 | eqtr3d 2795 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴) |
28 | 27 | adantr 484 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(𝐴 / -1) = -𝐴) |
29 | 15, 20, 28 | 3eqtrd 2797 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(exp‘((log‘𝐴)
− (i · π))) = -𝐴) |
30 | 29 | fveq2d 6662 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
(log‘-𝐴)) |
31 | | subcl 10923 |
. . . . 5
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π))
∈ ℂ) |
32 | 10, 13, 31 | sylancl 589 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((log‘𝐴) − (i
· π)) ∈ ℂ) |
33 | | argimgt0 25302 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (0(,)π)) |
34 | | eliooord 12838 |
. . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π)) |
36 | 35 | simpld 498 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) → 0
< (ℑ‘(log‘𝐴))) |
37 | | imcl 14518 |
. . . . . . . . 9
⊢
((log‘𝐴)
∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ) |
38 | 10, 37 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
39 | | pire 25150 |
. . . . . . . . 9
⊢ π
∈ ℝ |
40 | 39 | renegcli 10985 |
. . . . . . . 8
⊢ -π
∈ ℝ |
41 | | ltaddpos2 11169 |
. . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈
ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π <
((ℑ‘(log‘𝐴)) + -π))) |
42 | 38, 40, 41 | sylancl 589 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 < (ℑ‘(log‘𝐴)) ↔ -π <
((ℑ‘(log‘𝐴)) + -π))) |
43 | 36, 42 | mpbid 235 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) + -π)) |
44 | 38 | recnd 10707 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
45 | | negsub 10972 |
. . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ)
→ ((ℑ‘(log‘𝐴)) + -π) =
((ℑ‘(log‘𝐴)) − π)) |
46 | 44, 12, 45 | sylancl 589 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) + -π) =
((ℑ‘(log‘𝐴)) − π)) |
47 | 43, 46 | breqtrd 5058 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < ((ℑ‘(log‘𝐴)) − π)) |
48 | | imsub 14542 |
. . . . . . 7
⊢
(((log‘𝐴)
∈ ℂ ∧ (i · π) ∈ ℂ) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π)))) |
49 | 10, 13, 48 | sylancl 589 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π)))) |
50 | | reim 14516 |
. . . . . . . . 9
⊢ (π
∈ ℂ → (ℜ‘π) = (ℑ‘(i ·
π))) |
51 | 12, 50 | ax-mp 5 |
. . . . . . . 8
⊢
(ℜ‘π) = (ℑ‘(i · π)) |
52 | | rere 14529 |
. . . . . . . . 9
⊢ (π
∈ ℝ → (ℜ‘π) = π) |
53 | 39, 52 | ax-mp 5 |
. . . . . . . 8
⊢
(ℜ‘π) = π |
54 | 51, 53 | eqtr3i 2783 |
. . . . . . 7
⊢
(ℑ‘(i · π)) = π |
55 | 54 | oveq2i 7161 |
. . . . . 6
⊢
((ℑ‘(log‘𝐴)) − (ℑ‘(i ·
π))) = ((ℑ‘(log‘𝐴)) − π) |
56 | 49, 55 | eqtrdi 2809 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) =
((ℑ‘(log‘𝐴)) − π)) |
57 | 47, 56 | breqtrrd 5060 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
-π < (ℑ‘((log‘𝐴) − (i ·
π)))) |
58 | | resubcl 10988 |
. . . . . . 7
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((ℑ‘(log‘𝐴)) − π) ∈
ℝ) |
59 | 38, 39, 58 | sylancl 589 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ∈
ℝ) |
60 | 39 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
π ∈ ℝ) |
61 | | 0re 10681 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
62 | | pipos 25152 |
. . . . . . . 8
⊢ 0 <
π |
63 | 61, 39, 62 | ltleii 10801 |
. . . . . . 7
⊢ 0 ≤
π |
64 | | subge02 11194 |
. . . . . . . 8
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴)))) |
65 | 38, 39, 64 | sylancl 589 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴)))) |
66 | 63, 65 | mpbii 236 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ≤
(ℑ‘(log‘𝐴))) |
67 | | logimcl 25260 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
68 | 8, 67 | syldan 594 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
69 | 68 | simprd 499 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ π) |
70 | 59, 38, 60, 66, 69 | letrd 10835 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((ℑ‘(log‘𝐴)) − π) ≤ π) |
71 | 56, 70 | eqbrtrd 5054 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(ℑ‘((log‘𝐴) − (i · π))) ≤
π) |
72 | | ellogrn 25250 |
. . . 4
⊢
(((log‘𝐴)
− (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ
∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧
(ℑ‘((log‘𝐴) − (i · π))) ≤
π)) |
73 | 32, 57, 71, 72 | syl3anbrc 1340 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
((log‘𝐴) − (i
· π)) ∈ ran log) |
74 | | logef 25272 |
. . 3
⊢
(((log‘𝐴)
− (i · π)) ∈ ran log →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
((log‘𝐴) − (i
· π))) |
75 | 73, 74 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘(exp‘((log‘𝐴) − (i · π)))) =
((log‘𝐴) − (i
· π))) |
76 | 30, 75 | eqtr3d 2795 |
1
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℑ‘𝐴)) →
(log‘-𝐴) =
((log‘𝐴) − (i
· π))) |