MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logneg2 Structured version   Visualization version   GIF version

Theorem logneg2 25206
Description: The logarithm of the negative of a number with positive imaginary part is i · π less than the original. (Compare logneg 25179.) (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
logneg2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))

Proof of Theorem logneg2
StepHypRef Expression
1 imcl 14462 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11094 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 583 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6645 . . . . . . . . 9 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 14504 . . . . . . . . 9 (ℑ‘0) = 0
64, 5eqtrdi 2849 . . . . . . . 8 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 3019 . . . . . . 7 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 25160 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
11 ax-icn 10585 . . . . . 6 i ∈ ℂ
12 picn 25052 . . . . . 6 π ∈ ℂ
1311, 12mulcli 10637 . . . . 5 (i · π) ∈ ℂ
14 efsub 15445 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
1510, 13, 14sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
16 eflog 25168 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
178, 16syldan 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
18 efipi 25066 . . . . . 6 (exp‘(i · π)) = -1
1918a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · π)) = -1)
2017, 19oveq12d 7153 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((exp‘(log‘𝐴)) / (exp‘(i · π))) = (𝐴 / -1))
21 ax-1cn 10584 . . . . . . 7 1 ∈ ℂ
22 ax-1ne0 10595 . . . . . . 7 1 ≠ 0
23 divneg2 11353 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1))
2421, 22, 23mp3an23 1450 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1))
25 div1 11318 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2625negeqd 10869 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴)
2724, 26eqtr3d 2835 . . . . 5 (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴)
2827adantr 484 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / -1) = -𝐴)
2915, 20, 283eqtrd 2837 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = -𝐴)
3029fveq2d 6649 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = (log‘-𝐴))
31 subcl 10874 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π)) ∈ ℂ)
3210, 13, 31sylancl 589 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ℂ)
33 argimgt0 25203 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
34 eliooord 12784 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3533, 34syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3635simpld 498 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
37 imcl 14462 . . . . . . . . 9 ((log‘𝐴) ∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ)
3810, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
39 pire 25051 . . . . . . . . 9 π ∈ ℝ
4039renegcli 10936 . . . . . . . 8 -π ∈ ℝ
41 ltaddpos2 11120 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4238, 40, 41sylancl 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4336, 42mpbid 235 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + -π))
4438recnd 10658 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
45 negsub 10923 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4644, 12, 45sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4743, 46breqtrd 5056 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) − π))
48 imsub 14486 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
4910, 13, 48sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
50 reim 14460 . . . . . . . . 9 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
5112, 50ax-mp 5 . . . . . . . 8 (ℜ‘π) = (ℑ‘(i · π))
52 rere 14473 . . . . . . . . 9 (π ∈ ℝ → (ℜ‘π) = π)
5339, 52ax-mp 5 . . . . . . . 8 (ℜ‘π) = π
5451, 53eqtr3i 2823 . . . . . . 7 (ℑ‘(i · π)) = π
5554oveq2i 7146 . . . . . 6 ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))) = ((ℑ‘(log‘𝐴)) − π)
5649, 55eqtrdi 2849 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − π))
5747, 56breqtrrd 5058 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘((log‘𝐴) − (i · π))))
58 resubcl 10939 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
5938, 39, 58sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
6039a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
61 0re 10632 . . . . . . . 8 0 ∈ ℝ
62 pipos 25053 . . . . . . . 8 0 < π
6361, 39, 62ltleii 10752 . . . . . . 7 0 ≤ π
64 subge02 11145 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6538, 39, 64sylancl 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6663, 65mpbii 236 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴)))
67 logimcl 25161 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
688, 67syldan 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
6968simprd 499 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
7059, 38, 60, 66, 69letrd 10786 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ π)
7156, 70eqbrtrd 5052 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) ≤ π)
72 ellogrn 25151 . . . 4 (((log‘𝐴) − (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧ (ℑ‘((log‘𝐴) − (i · π))) ≤ π))
7332, 57, 71, 72syl3anbrc 1340 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ran log)
74 logef 25173 . . 3 (((log‘𝐴) − (i · π)) ∈ ran log → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7573, 74syl 17 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7630, 75eqtr3d 2835 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  ran crn 5520  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  (,)cioo 12726  cre 14448  cim 14449  expce 15407  πcpi 15412  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  atanlogsublem  25501
  Copyright terms: Public domain W3C validator