MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logneg2 Structured version   Visualization version   GIF version

Theorem logneg2 26561
Description: The logarithm of the negative of a number with positive imaginary part is i · π less than the original. (Compare logneg 26534.) (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
logneg2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))

Proof of Theorem logneg2
StepHypRef Expression
1 imcl 15028 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 11592 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6831 . . . . . . . . 9 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 15070 . . . . . . . . 9 (ℑ‘0) = 0
64, 5eqtrdi 2784 . . . . . . . 8 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2962 . . . . . . 7 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 26514 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
11 ax-icn 11075 . . . . . 6 i ∈ ℂ
12 picn 26404 . . . . . 6 π ∈ ℂ
1311, 12mulcli 11129 . . . . 5 (i · π) ∈ ℂ
14 efsub 16019 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
1510, 13, 14sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
16 eflog 26522 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
178, 16syldan 591 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
18 efipi 26419 . . . . . 6 (exp‘(i · π)) = -1
1918a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · π)) = -1)
2017, 19oveq12d 7373 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((exp‘(log‘𝐴)) / (exp‘(i · π))) = (𝐴 / -1))
21 ax-1cn 11074 . . . . . . 7 1 ∈ ℂ
22 ax-1ne0 11085 . . . . . . 7 1 ≠ 0
23 divneg2 11855 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1))
2421, 22, 23mp3an23 1455 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1))
25 div1 11821 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2625negeqd 11364 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴)
2724, 26eqtr3d 2770 . . . . 5 (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴)
2827adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / -1) = -𝐴)
2915, 20, 283eqtrd 2772 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = -𝐴)
3029fveq2d 6835 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = (log‘-𝐴))
31 subcl 11369 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π)) ∈ ℂ)
3210, 13, 31sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ℂ)
33 argimgt0 26558 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
34 eliooord 13315 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3533, 34syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3635simpld 494 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
37 imcl 15028 . . . . . . . . 9 ((log‘𝐴) ∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ)
3810, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
39 pire 26403 . . . . . . . . 9 π ∈ ℝ
4039renegcli 11432 . . . . . . . 8 -π ∈ ℝ
41 ltaddpos2 11618 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4238, 40, 41sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4336, 42mpbid 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + -π))
4438recnd 11150 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
45 negsub 11419 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4644, 12, 45sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4743, 46breqtrd 5121 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) − π))
48 imsub 15052 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
4910, 13, 48sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
50 reim 15026 . . . . . . . . 9 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
5112, 50ax-mp 5 . . . . . . . 8 (ℜ‘π) = (ℑ‘(i · π))
52 rere 15039 . . . . . . . . 9 (π ∈ ℝ → (ℜ‘π) = π)
5339, 52ax-mp 5 . . . . . . . 8 (ℜ‘π) = π
5451, 53eqtr3i 2758 . . . . . . 7 (ℑ‘(i · π)) = π
5554oveq2i 7366 . . . . . 6 ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))) = ((ℑ‘(log‘𝐴)) − π)
5649, 55eqtrdi 2784 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − π))
5747, 56breqtrrd 5123 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘((log‘𝐴) − (i · π))))
58 resubcl 11435 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
5938, 39, 58sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
6039a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
61 0re 11124 . . . . . . . 8 0 ∈ ℝ
62 pipos 26405 . . . . . . . 8 0 < π
6361, 39, 62ltleii 11246 . . . . . . 7 0 ≤ π
64 subge02 11643 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6538, 39, 64sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6663, 65mpbii 233 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴)))
67 logimcl 26515 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
688, 67syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
6968simprd 495 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
7059, 38, 60, 66, 69letrd 11280 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ π)
7156, 70eqbrtrd 5117 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) ≤ π)
72 ellogrn 26505 . . . 4 (((log‘𝐴) − (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧ (ℑ‘((log‘𝐴) − (i · π))) ≤ π))
7332, 57, 71, 72syl3anbrc 1344 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ran log)
74 logef 26527 . . 3 (((log‘𝐴) − (i · π)) ∈ ran log → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7573, 74syl 17 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7630, 75eqtr3d 2770 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  ran crn 5622  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017  ici 11018   + caddc 11019   · cmul 11021   < clt 11156  cle 11157  cmin 11354  -cneg 11355   / cdiv 11784  (,)cioo 13255  cre 15014  cim 15015  expce 15978  πcpi 15983  logclog 26500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-log 26502
This theorem is referenced by:  atanlogsublem  26862
  Copyright terms: Public domain W3C validator