![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version |
Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
gt0ne0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
gt0ne0ii | ⊢ 𝐴 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | gt0ne0i 11825 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: eqneg 12014 recgt0ii 12201 nnne0i 12333 2ne0 12397 3ne0 12399 4ne0 12401 8th4div3 12513 halfpm6th 12514 5recm6rec 12902 0.999... 15929 bpoly2 16105 bpoly3 16106 fsumcube 16108 efi4p 16185 resin4p 16186 recos4p 16187 ef01bndlem 16232 cos2bnd 16236 sincos2sgn 16242 ene0 16257 sinhalfpilem 26523 tan4thpi 26574 sincos6thpi 26576 sineq0 26584 coseq1 26585 efeq1 26588 cosne0 26589 efif1olem2 26603 efif1olem4 26605 eflogeq 26662 logf1o2 26710 cxpsqrt 26763 root1eq1 26816 sqrt2cxp2logb9e3 26860 ang180lem1 26870 ang180lem2 26871 ang180lem3 26872 2lgsoddprmlem1 27470 2lgsoddprmlem2 27471 chebbnd1lem3 27533 chebbnd1 27534 dp2cl 32844 dp2ltc 32851 dpfrac1 32856 dpmul4 32878 subfaclim 35156 bj-pinftynminfty 37193 taupilem1 37287 pine0 42302 acos1half 42340 proot1ex 43157 coseq0 45785 sinaover2ne0 45789 wallispi 45991 stirlinglem3 45997 stirlinglem15 46009 dirkertrigeqlem2 46020 dirkertrigeqlem3 46021 dirkertrigeq 46022 dirkeritg 46023 dirkercncflem1 46024 fourierdlem24 46052 fourierdlem95 46122 fourierswlem 46151 |
Copyright terms: Public domain | W3C validator |