| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ne0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ne0i 11655 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ℝcr 11008 0cc0 11009 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 |
| This theorem is referenced by: eqneg 11844 recgt0ii 12031 nnne0i 12168 8th4div3 12344 halfpm6th 12346 5recm6rec 12734 0.999... 15788 bpoly2 15964 bpoly3 15965 fsumcube 15967 efi4p 16046 resin4p 16047 recos4p 16048 ef01bndlem 16093 cos2bnd 16097 sincos2sgn 16103 ene0 16118 pine0 26367 sinhalfpilem 26370 tan4thpi 26421 sincos6thpi 26423 sineq0 26431 coseq1 26432 efeq1 26435 cosne0 26436 efif1olem2 26450 efif1olem4 26452 eflogeq 26509 logf1o2 26557 cxpsqrt 26610 root1eq1 26663 sqrt2cxp2logb9e3 26707 ang180lem1 26717 ang180lem2 26718 ang180lem3 26719 2lgsoddprmlem1 27317 2lgsoddprmlem2 27318 chebbnd1lem3 27380 chebbnd1 27381 dp2cl 32820 dp2ltc 32827 dpfrac1 32832 dpmul4 32854 subfaclim 35161 bj-pinftynminfty 37201 taupilem1 37295 acos1half 42331 proot1ex 43169 coseq0 45845 sinaover2ne0 45849 wallispi 46051 stirlinglem3 46057 stirlinglem15 46069 dirkertrigeqlem2 46080 dirkertrigeqlem3 46081 dirkertrigeq 46082 dirkeritg 46083 dirkercncflem1 46084 fourierdlem24 46112 fourierdlem95 46182 fourierswlem 46211 |
| Copyright terms: Public domain | W3C validator |