![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version |
Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
gt0ne0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
gt0ne0ii | ⊢ 𝐴 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | gt0ne0i 11795 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ≠ wne 2937 class class class wbr 5147 ℝcr 11151 0cc0 11152 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: eqneg 11984 recgt0ii 12171 nnne0i 12303 2ne0 12367 3ne0 12369 4ne0 12371 8th4div3 12483 halfpm6th 12484 5recm6rec 12874 0.999... 15913 bpoly2 16089 bpoly3 16090 fsumcube 16092 efi4p 16169 resin4p 16170 recos4p 16171 ef01bndlem 16216 cos2bnd 16220 sincos2sgn 16226 ene0 16241 sinhalfpilem 26519 tan4thpi 26570 sincos6thpi 26572 sineq0 26580 coseq1 26581 efeq1 26584 cosne0 26585 efif1olem2 26599 efif1olem4 26601 eflogeq 26658 logf1o2 26706 cxpsqrt 26759 root1eq1 26812 sqrt2cxp2logb9e3 26856 ang180lem1 26866 ang180lem2 26867 ang180lem3 26868 2lgsoddprmlem1 27466 2lgsoddprmlem2 27467 chebbnd1lem3 27529 chebbnd1 27530 dp2cl 32846 dp2ltc 32853 dpfrac1 32858 dpmul4 32880 subfaclim 35172 bj-pinftynminfty 37209 taupilem1 37303 pine0 42326 acos1half 42366 proot1ex 43184 coseq0 45819 sinaover2ne0 45823 wallispi 46025 stirlinglem3 46031 stirlinglem15 46043 dirkertrigeqlem2 46054 dirkertrigeqlem3 46055 dirkertrigeq 46056 dirkeritg 46057 dirkercncflem1 46058 fourierdlem24 46086 fourierdlem95 46156 fourierswlem 46185 |
Copyright terms: Public domain | W3C validator |