Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version |
Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
gt0ne0i.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
gt0ne0ii | ⊢ 𝐴 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 2 | gt0ne0i 11440 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: eqneg 11625 recgt0ii 11811 nnne0i 11943 2ne0 12007 3ne0 12009 4ne0 12011 8th4div3 12123 halfpm6th 12124 5recm6rec 12510 0.999... 15521 bpoly2 15695 bpoly3 15696 fsumcube 15698 efi4p 15774 resin4p 15775 recos4p 15776 ef01bndlem 15821 cos2bnd 15825 sincos2sgn 15831 ene0 15846 sinhalfpilem 25525 sincos6thpi 25577 sineq0 25585 coseq1 25586 efeq1 25589 cosne0 25590 efif1olem2 25604 efif1olem4 25606 eflogeq 25662 logf1o2 25710 cxpsqrt 25763 root1eq1 25813 sqrt2cxp2logb9e3 25854 ang180lem1 25864 ang180lem2 25865 ang180lem3 25866 2lgsoddprmlem1 26461 2lgsoddprmlem2 26462 chebbnd1lem3 26524 chebbnd1 26525 dp2cl 31056 dp2ltc 31063 dpfrac1 31068 dpmul4 31090 subfaclim 33050 bj-pinftynminfty 35325 taupilem1 35419 acos1half 40098 proot1ex 40942 coseq0 43295 sinaover2ne0 43299 wallispi 43501 stirlinglem3 43507 stirlinglem15 43519 dirkertrigeqlem2 43530 dirkertrigeqlem3 43531 dirkertrigeq 43532 dirkeritg 43533 dirkercncflem1 43534 fourierdlem24 43562 fourierdlem95 43632 fourierswlem 43661 |
Copyright terms: Public domain | W3C validator |