| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ne0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ne0i 11720 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: eqneg 11909 recgt0ii 12096 nnne0i 12233 8th4div3 12409 halfpm6th 12411 5recm6rec 12799 0.999... 15854 bpoly2 16030 bpoly3 16031 fsumcube 16033 efi4p 16112 resin4p 16113 recos4p 16114 ef01bndlem 16159 cos2bnd 16163 sincos2sgn 16169 ene0 16184 pine0 26376 sinhalfpilem 26379 tan4thpi 26430 sincos6thpi 26432 sineq0 26440 coseq1 26441 efeq1 26444 cosne0 26445 efif1olem2 26459 efif1olem4 26461 eflogeq 26518 logf1o2 26566 cxpsqrt 26619 root1eq1 26672 sqrt2cxp2logb9e3 26716 ang180lem1 26726 ang180lem2 26727 ang180lem3 26728 2lgsoddprmlem1 27326 2lgsoddprmlem2 27327 chebbnd1lem3 27389 chebbnd1 27390 dp2cl 32807 dp2ltc 32814 dpfrac1 32819 dpmul4 32841 subfaclim 35182 bj-pinftynminfty 37222 taupilem1 37316 acos1half 42353 proot1ex 43192 coseq0 45869 sinaover2ne0 45873 wallispi 46075 stirlinglem3 46081 stirlinglem15 46093 dirkertrigeqlem2 46104 dirkertrigeqlem3 46105 dirkertrigeq 46106 dirkeritg 46107 dirkercncflem1 46108 fourierdlem24 46136 fourierdlem95 46206 fourierswlem 46235 |
| Copyright terms: Public domain | W3C validator |