| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ne0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ne0i 11770 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ℝcr 11126 0cc0 11127 < clt 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-addrcl 11188 ax-rnegex 11198 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 |
| This theorem is referenced by: eqneg 11959 recgt0ii 12146 nnne0i 12278 8th4div3 12459 halfpm6th 12461 5recm6rec 12849 0.999... 15895 bpoly2 16071 bpoly3 16072 fsumcube 16074 efi4p 16153 resin4p 16154 recos4p 16155 ef01bndlem 16200 cos2bnd 16204 sincos2sgn 16210 ene0 16225 pine0 26419 sinhalfpilem 26422 tan4thpi 26473 sincos6thpi 26475 sineq0 26483 coseq1 26484 efeq1 26487 cosne0 26488 efif1olem2 26502 efif1olem4 26504 eflogeq 26561 logf1o2 26609 cxpsqrt 26662 root1eq1 26715 sqrt2cxp2logb9e3 26759 ang180lem1 26769 ang180lem2 26770 ang180lem3 26771 2lgsoddprmlem1 27369 2lgsoddprmlem2 27370 chebbnd1lem3 27432 chebbnd1 27433 dp2cl 32800 dp2ltc 32807 dpfrac1 32812 dpmul4 32834 subfaclim 35156 bj-pinftynminfty 37191 taupilem1 37285 acos1half 42348 proot1ex 43167 coseq0 45841 sinaover2ne0 45845 wallispi 46047 stirlinglem3 46053 stirlinglem15 46065 dirkertrigeqlem2 46076 dirkertrigeqlem3 46077 dirkertrigeq 46078 dirkeritg 46079 dirkercncflem1 46080 fourierdlem24 46108 fourierdlem95 46178 fourierswlem 46207 |
| Copyright terms: Public domain | W3C validator |