| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ne0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ne0i 11713 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: eqneg 11902 recgt0ii 12089 nnne0i 12226 8th4div3 12402 halfpm6th 12404 5recm6rec 12792 0.999... 15847 bpoly2 16023 bpoly3 16024 fsumcube 16026 efi4p 16105 resin4p 16106 recos4p 16107 ef01bndlem 16152 cos2bnd 16156 sincos2sgn 16162 ene0 16177 pine0 26369 sinhalfpilem 26372 tan4thpi 26423 sincos6thpi 26425 sineq0 26433 coseq1 26434 efeq1 26437 cosne0 26438 efif1olem2 26452 efif1olem4 26454 eflogeq 26511 logf1o2 26559 cxpsqrt 26612 root1eq1 26665 sqrt2cxp2logb9e3 26709 ang180lem1 26719 ang180lem2 26720 ang180lem3 26721 2lgsoddprmlem1 27319 2lgsoddprmlem2 27320 chebbnd1lem3 27382 chebbnd1 27383 dp2cl 32800 dp2ltc 32807 dpfrac1 32812 dpmul4 32834 subfaclim 35175 bj-pinftynminfty 37215 taupilem1 37309 acos1half 42346 proot1ex 43185 coseq0 45862 sinaover2ne0 45866 wallispi 46068 stirlinglem3 46074 stirlinglem15 46086 dirkertrigeqlem2 46097 dirkertrigeqlem3 46098 dirkertrigeq 46099 dirkeritg 46100 dirkercncflem1 46101 fourierdlem24 46129 fourierdlem95 46199 fourierswlem 46228 |
| Copyright terms: Public domain | W3C validator |