| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ne0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ne0i 11689 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: eqneg 11878 recgt0ii 12065 nnne0i 12202 8th4div3 12378 halfpm6th 12380 5recm6rec 12768 0.999... 15823 bpoly2 15999 bpoly3 16000 fsumcube 16002 efi4p 16081 resin4p 16082 recos4p 16083 ef01bndlem 16128 cos2bnd 16132 sincos2sgn 16138 ene0 16153 pine0 26345 sinhalfpilem 26348 tan4thpi 26399 sincos6thpi 26401 sineq0 26409 coseq1 26410 efeq1 26413 cosne0 26414 efif1olem2 26428 efif1olem4 26430 eflogeq 26487 logf1o2 26535 cxpsqrt 26588 root1eq1 26641 sqrt2cxp2logb9e3 26685 ang180lem1 26695 ang180lem2 26696 ang180lem3 26697 2lgsoddprmlem1 27295 2lgsoddprmlem2 27296 chebbnd1lem3 27358 chebbnd1 27359 dp2cl 32773 dp2ltc 32780 dpfrac1 32785 dpmul4 32807 subfaclim 35148 bj-pinftynminfty 37188 taupilem1 37282 acos1half 42319 proot1ex 43158 coseq0 45835 sinaover2ne0 45839 wallispi 46041 stirlinglem3 46047 stirlinglem15 46059 dirkertrigeqlem2 46070 dirkertrigeqlem3 46071 dirkertrigeq 46072 dirkeritg 46073 dirkercncflem1 46074 fourierdlem24 46102 fourierdlem95 46172 fourierswlem 46201 |
| Copyright terms: Public domain | W3C validator |