| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gt0ne0ii | Structured version Visualization version GIF version | ||
| Description: Positive implies nonzero. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| gt0ne0i.2 | ⊢ 0 < 𝐴 |
| Ref | Expression |
|---|---|
| gt0ne0ii | ⊢ 𝐴 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0i.2 | . 2 ⊢ 0 < 𝐴 | |
| 2 | lt2.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 2 | gt0ne0i 11647 | . 2 ⊢ (0 < 𝐴 → 𝐴 ≠ 0) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 ℝcr 11000 0cc0 11001 < clt 11141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-addrcl 11062 ax-rnegex 11072 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 |
| This theorem is referenced by: eqneg 11836 recgt0ii 12023 nnne0i 12160 8th4div3 12336 halfpm6th 12338 5recm6rec 12726 0.999... 15783 bpoly2 15959 bpoly3 15960 fsumcube 15962 efi4p 16041 resin4p 16042 recos4p 16043 ef01bndlem 16088 cos2bnd 16092 sincos2sgn 16098 ene0 16113 pine0 26391 sinhalfpilem 26394 tan4thpi 26445 sincos6thpi 26447 sineq0 26455 coseq1 26456 efeq1 26459 cosne0 26460 efif1olem2 26474 efif1olem4 26476 eflogeq 26533 logf1o2 26581 cxpsqrt 26634 root1eq1 26687 sqrt2cxp2logb9e3 26731 ang180lem1 26741 ang180lem2 26742 ang180lem3 26743 2lgsoddprmlem1 27341 2lgsoddprmlem2 27342 chebbnd1lem3 27404 chebbnd1 27405 dp2cl 32852 dp2ltc 32859 dpfrac1 32864 dpmul4 32886 subfaclim 35224 bj-pinftynminfty 37261 taupilem1 37355 acos1half 42391 proot1ex 43229 coseq0 45902 sinaover2ne0 45906 wallispi 46108 stirlinglem3 46114 stirlinglem15 46126 dirkertrigeqlem2 46137 dirkertrigeqlem3 46138 dirkertrigeq 46139 dirkeritg 46140 dirkercncflem1 46141 fourierdlem24 46169 fourierdlem95 46239 fourierswlem 46268 |
| Copyright terms: Public domain | W3C validator |