| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exps0 | Structured version Visualization version GIF version | ||
| Description: Surreal exponentiation to zero. (Contributed by Scott Fenton, 24-Jul-2025.) |
| Ref | Expression |
|---|---|
| exps0 | ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zs 28322 | . . 3 ⊢ 0s ∈ ℤs | |
| 2 | expsval 28358 | . . 3 ⊢ ((𝐴 ∈ No ∧ 0s ∈ ℤs) → (𝐴↑s 0s ) = if( 0s = 0s , 1s , if( 0s <s 0s , (seqs 1s ( ·s , (ℕs × {𝐴}))‘ 0s ), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘ 0s )))))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = if( 0s = 0s , 1s , if( 0s <s 0s , (seqs 1s ( ·s , (ℕs × {𝐴}))‘ 0s ), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘ 0s )))))) |
| 4 | eqid 2733 | . . 3 ⊢ 0s = 0s | |
| 5 | 4 | iftruei 4483 | . 2 ⊢ if( 0s = 0s , 1s , if( 0s <s 0s , (seqs 1s ( ·s , (ℕs × {𝐴}))‘ 0s ), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘ 0s ))))) = 1s |
| 6 | 3, 5 | eqtrdi 2784 | 1 ⊢ (𝐴 ∈ No → (𝐴↑s 0s ) = 1s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ifcif 4476 {csn 4577 class class class wbr 5095 × cxp 5619 ‘cfv 6489 (class class class)co 7355 No csur 27588 <s cslt 27589 0s c0s 27776 1s c1s 27777 -us cnegs 27971 ·s cmuls 28055 /su cdivs 28136 seqscseqs 28223 ℕscnns 28253 ℤsczs 28312 ↑scexps 28345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 df-seqs 28224 df-n0s 28254 df-nns 28255 df-zs 28313 df-exps 28346 |
| This theorem is referenced by: expsp1 28362 expscllem 28363 expadds 28368 expsne0 28369 expsgt0 28370 pw2recs 28371 pw2cut 28390 pw2cut2 28392 zzs12 28395 zs12zodd 28402 zs12bday 28404 |
| Copyright terms: Public domain | W3C validator |