| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expsnnval | Structured version Visualization version GIF version | ||
| Description: Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.) |
| Ref | Expression |
|---|---|
| expsnnval | ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnzs 28279 | . . 3 ⊢ (𝑁 ∈ ℕs → 𝑁 ∈ ℤs) | |
| 2 | expsval 28317 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℤs) → (𝐴↑s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁)))))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁)))))) |
| 4 | nnne0s 28234 | . . . . . 6 ⊢ (𝑁 ∈ ℕs → 𝑁 ≠ 0s ) | |
| 5 | 4 | neneqd 2930 | . . . . 5 ⊢ (𝑁 ∈ ℕs → ¬ 𝑁 = 0s ) |
| 6 | 5 | iffalsed 4487 | . . . 4 ⊢ (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) = if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) |
| 7 | nnsgt0 28236 | . . . . 5 ⊢ (𝑁 ∈ ℕs → 0s <s 𝑁) | |
| 8 | 7 | iftrued 4484 | . . . 4 ⊢ (𝑁 ∈ ℕs → if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁)))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| 9 | 6, 8 | eqtrd 2764 | . . 3 ⊢ (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| 11 | 3, 10 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4476 {csn 4577 class class class wbr 5092 × cxp 5617 ‘cfv 6482 (class class class)co 7349 No csur 27549 <s cslt 27550 0s c0s 27736 1s c1s 27737 -us cnegs 27930 ·s cmuls 28014 /su cdivs 28095 seqscseqs 28182 ℕscnns 28212 ℤsczs 28271 ↑scexps 28304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-1s 27739 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec 27850 df-norec2 27861 df-adds 27872 df-negs 27932 df-subs 27933 df-seqs 28183 df-n0s 28213 df-nns 28214 df-zs 28272 df-exps 28305 |
| This theorem is referenced by: exps1 28320 expsp1 28321 |
| Copyright terms: Public domain | W3C validator |