MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsnnval Structured version   Visualization version   GIF version

Theorem expsnnval 28318
Description: Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
expsnnval ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))

Proof of Theorem expsnnval
StepHypRef Expression
1 nnzs 28279 . . 3 (𝑁 ∈ ℕs𝑁 ∈ ℤs)
2 expsval 28317 . . 3 ((𝐴 No 𝑁 ∈ ℤs) → (𝐴s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))))
31, 2sylan2 593 . 2 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))))
4 nnne0s 28234 . . . . . 6 (𝑁 ∈ ℕs𝑁 ≠ 0s )
54neneqd 2930 . . . . 5 (𝑁 ∈ ℕs → ¬ 𝑁 = 0s )
65iffalsed 4487 . . . 4 (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))) = if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁)))))
7 nnsgt0 28236 . . . . 5 (𝑁 ∈ ℕs → 0s <s 𝑁)
87iftrued 4484 . . . 4 (𝑁 ∈ ℕs → if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁)))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
96, 8eqtrd 2764 . . 3 (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
109adantl 481 . 2 ((𝐴 No 𝑁 ∈ ℕs) → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
113, 10eqtrd 2764 1 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4476  {csn 4577   class class class wbr 5092   × cxp 5617  cfv 6482  (class class class)co 7349   No csur 27549   <s cslt 27550   0s c0s 27736   1s c1s 27737   -us cnegs 27930   ·s cmuls 28014   /su cdivs 28095  seqscseqs 28182  scnns 28212  sczs 28271  scexps 28304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-seqs 28183  df-n0s 28213  df-nns 28214  df-zs 28272  df-exps 28305
This theorem is referenced by:  exps1  28320  expsp1  28321
  Copyright terms: Public domain W3C validator