| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expsnnval | Structured version Visualization version GIF version | ||
| Description: Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.) |
| Ref | Expression |
|---|---|
| expsnnval | ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnzs 28281 | . . 3 ⊢ (𝑁 ∈ ℕs → 𝑁 ∈ ℤs) | |
| 2 | expsval 28318 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℤs) → (𝐴↑s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁)))))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁)))))) |
| 4 | nnne0s 28236 | . . . . . 6 ⊢ (𝑁 ∈ ℕs → 𝑁 ≠ 0s ) | |
| 5 | 4 | neneqd 2931 | . . . . 5 ⊢ (𝑁 ∈ ℕs → ¬ 𝑁 = 0s ) |
| 6 | 5 | iffalsed 4502 | . . . 4 ⊢ (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) = if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) |
| 7 | nnsgt0 28238 | . . . . 5 ⊢ (𝑁 ∈ ℕs → 0s <s 𝑁) | |
| 8 | 7 | iftrued 4499 | . . . 4 ⊢ (𝑁 ∈ ℕs → if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁)))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| 9 | 6, 8 | eqtrd 2765 | . . 3 ⊢ (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us ‘𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| 11 | 3, 10 | eqtrd 2765 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑁 ∈ ℕs) → (𝐴↑s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4491 {csn 4592 class class class wbr 5110 × cxp 5639 ‘cfv 6514 (class class class)co 7390 No csur 27558 <s cslt 27559 0s c0s 27741 1s c1s 27742 -us cnegs 27932 ·s cmuls 28016 /su cdivs 28097 seqscseqs 28184 ℕscnns 28214 ℤsczs 28273 ↑scexps 28305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-seqs 28185 df-n0s 28215 df-nns 28216 df-zs 28274 df-exps 28306 |
| This theorem is referenced by: exps1 28321 expsp1 28322 |
| Copyright terms: Public domain | W3C validator |