MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsnnval Structured version   Visualization version   GIF version

Theorem expsnnval 28427
Description: Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
expsnnval ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))

Proof of Theorem expsnnval
StepHypRef Expression
1 nnzs 28390 . . 3 (𝑁 ∈ ℕs𝑁 ∈ ℤs)
2 expsval 28426 . . 3 ((𝐴 No 𝑁 ∈ ℤs) → (𝐴s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))))
31, 2sylan2 592 . 2 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))))
4 nnne0s 28358 . . . . . 6 (𝑁 ∈ ℕs𝑁 ≠ 0s )
54neneqd 2951 . . . . 5 (𝑁 ∈ ℕs → ¬ 𝑁 = 0s )
65iffalsed 4559 . . . 4 (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))) = if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁)))))
7 nnsgt0 28360 . . . . 5 (𝑁 ∈ ℕs → 0s <s 𝑁)
87iftrued 4556 . . . 4 (𝑁 ∈ ℕs → if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁)))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
96, 8eqtrd 2780 . . 3 (𝑁 ∈ ℕs → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
109adantl 481 . 2 ((𝐴 No 𝑁 ∈ ℕs) → if(𝑁 = 0s , 1s , if( 0s <s 𝑁, (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝐴}))‘( -us𝑁))))) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
113, 10eqtrd 2780 1 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548  {csn 4648   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448   No csur 27702   <s cslt 27703   0s c0s 27885   1s c1s 27886   -us cnegs 28069   ·s cmuls 28150   /su cdivs 28231  seqscseqs 28307  scnns 28337  sczs 28382  scexps 28414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-seqs 28308  df-n0s 28338  df-nns 28339  df-zs 28383  df-exps 28415
This theorem is referenced by:  exps1  28429  expsp1  28430
  Copyright terms: Public domain W3C validator