MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nohalf Structured version   Visualization version   GIF version

Theorem nohalf 28425
Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.)
Assertion
Ref Expression
nohalf ( 1s /su 2s) = ({ 0s } |s { 1s })

Proof of Theorem nohalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5451 . . . . . . . 8 { 0s } ∈ V
21a1i 11 . . . . . . 7 (⊤ → { 0s } ∈ V)
3 snex 5451 . . . . . . . 8 { 1s } ∈ V
43a1i 11 . . . . . . 7 (⊤ → { 1s } ∈ V)
5 0sno 27889 . . . . . . . . 9 0s No
65a1i 11 . . . . . . . 8 (⊤ → 0s No )
76snssd 4834 . . . . . . 7 (⊤ → { 0s } ⊆ No )
8 1sno 27890 . . . . . . . 8 1s No
9 snssi 4833 . . . . . . . 8 ( 1s No → { 1s } ⊆ No )
108, 9mp1i 13 . . . . . . 7 (⊤ → { 1s } ⊆ No )
11 velsn 4664 . . . . . . . . 9 (𝑥 ∈ { 0s } ↔ 𝑥 = 0s )
12 velsn 4664 . . . . . . . . 9 (𝑦 ∈ { 1s } ↔ 𝑦 = 1s )
13 0slt1s 27892 . . . . . . . . . 10 0s <s 1s
14 breq12 5171 . . . . . . . . . 10 ((𝑥 = 0s𝑦 = 1s ) → (𝑥 <s 𝑦 ↔ 0s <s 1s ))
1513, 14mpbiri 258 . . . . . . . . 9 ((𝑥 = 0s𝑦 = 1s ) → 𝑥 <s 𝑦)
1611, 12, 15syl2anb 597 . . . . . . . 8 ((𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s }) → 𝑥 <s 𝑦)
17163adant1 1130 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s }) → 𝑥 <s 𝑦)
182, 4, 7, 10, 17ssltd 27854 . . . . . 6 (⊤ → { 0s } <<s { 1s })
1918scutcld 27866 . . . . 5 (⊤ → ({ 0s } |s { 1s }) ∈ No )
2019mptru 1544 . . . 4 ({ 0s } |s { 1s }) ∈ No
21 no2times 28419 . . . 4 (({ 0s } |s { 1s }) ∈ No → (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })))
2220, 21ax-mp 5 . . 3 (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s }))
23 eqidd 2741 . . . . . 6 (⊤ → ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))
2418, 18, 23, 23addsunif 28053 . . . . 5 (⊤ → (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})))
2524mptru 1544 . . . 4 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}))
265elexi 3511 . . . . . . . . . . 11 0s ∈ V
27 oveq1 7455 . . . . . . . . . . . . 13 (𝑦 = 0s → (𝑦 +s ({ 0s } |s { 1s })) = ( 0s +s ({ 0s } |s { 1s })))
28 addslid 28019 . . . . . . . . . . . . . 14 (({ 0s } |s { 1s }) ∈ No → ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s }))
2920, 28ax-mp 5 . . . . . . . . . . . . 13 ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s })
3027, 29eqtrdi 2796 . . . . . . . . . . . 12 (𝑦 = 0s → (𝑦 +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s }))
3130eqeq2d 2751 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s })))
3226, 31rexsn 4706 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s }))
3332abbii 2812 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ({ 0s } |s { 1s })}
34 df-sn 4649 . . . . . . . . 9 {({ 0s } |s { 1s })} = {𝑥𝑥 = ({ 0s } |s { 1s })}
3533, 34eqtr4i 2771 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {({ 0s } |s { 1s })}
36 oveq2 7456 . . . . . . . . . . . . 13 (𝑦 = 0s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 0s ))
37 addsrid 28015 . . . . . . . . . . . . . 14 (({ 0s } |s { 1s }) ∈ No → (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s }))
3820, 37ax-mp 5 . . . . . . . . . . . . 13 (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s })
3936, 38eqtrdi 2796 . . . . . . . . . . . 12 (𝑦 = 0s → (({ 0s } |s { 1s }) +s 𝑦) = ({ 0s } |s { 1s }))
4039eqeq2d 2751 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s })))
4126, 40rexsn 4706 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s }))
4241abbii 2812 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = ({ 0s } |s { 1s })}
4342, 34eqtr4i 2771 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {({ 0s } |s { 1s })}
4435, 43uneq12i 4189 . . . . . . 7 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })})
45 unidm 4180 . . . . . . 7 ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })}) = {({ 0s } |s { 1s })}
4644, 45eqtri 2768 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {({ 0s } |s { 1s })}
478elexi 3511 . . . . . . . . . . 11 1s ∈ V
48 oveq1 7455 . . . . . . . . . . . . 13 (𝑦 = 1s → (𝑦 +s ({ 0s } |s { 1s })) = ( 1s +s ({ 0s } |s { 1s })))
49 addscom 28017 . . . . . . . . . . . . . 14 (( 1s No ∧ ({ 0s } |s { 1s }) ∈ No ) → ( 1s +s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s 1s ))
508, 20, 49mp2an 691 . . . . . . . . . . . . 13 ( 1s +s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s 1s )
5148, 50eqtrdi 2796 . . . . . . . . . . . 12 (𝑦 = 1s → (𝑦 +s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s 1s ))
5251eqeq2d 2751 . . . . . . . . . . 11 (𝑦 = 1s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s )))
5347, 52rexsn 4706 . . . . . . . . . 10 (∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s ))
5453abbii 2812 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = (({ 0s } |s { 1s }) +s 1s )}
55 df-sn 4649 . . . . . . . . 9 {(({ 0s } |s { 1s }) +s 1s )} = {𝑥𝑥 = (({ 0s } |s { 1s }) +s 1s )}
5654, 55eqtr4i 2771 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {(({ 0s } |s { 1s }) +s 1s )}
57 oveq2 7456 . . . . . . . . . . . 12 (𝑦 = 1s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 1s ))
5857eqeq2d 2751 . . . . . . . . . . 11 (𝑦 = 1s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s )))
5947, 58rexsn 4706 . . . . . . . . . 10 (∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s ))
6059abbii 2812 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = (({ 0s } |s { 1s }) +s 1s )}
6160, 55eqtr4i 2771 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {(({ 0s } |s { 1s }) +s 1s )}
6256, 61uneq12i 4189 . . . . . . 7 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({(({ 0s } |s { 1s }) +s 1s )} ∪ {(({ 0s } |s { 1s }) +s 1s )})
63 unidm 4180 . . . . . . 7 ({(({ 0s } |s { 1s }) +s 1s )} ∪ {(({ 0s } |s { 1s }) +s 1s )}) = {(({ 0s } |s { 1s }) +s 1s )}
6462, 63eqtri 2768 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {(({ 0s } |s { 1s }) +s 1s )}
6546, 64oveq12i 7460 . . . . 5 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
66 ral0 4536 . . . . . . 7 𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) <s 𝑥
67 slerflex 27826 . . . . . . . . . . . 12 ( 1s No → 1s ≤s 1s )
688, 67ax-mp 5 . . . . . . . . . . 11 1s ≤s 1s
69 breq1 5169 . . . . . . . . . . . 12 (𝑦 = 1s → (𝑦 ≤s 1s ↔ 1s ≤s 1s ))
7047, 69rexsn 4706 . . . . . . . . . . 11 (∃𝑦 ∈ { 1s }𝑦 ≤s 1s ↔ 1s ≤s 1s )
7168, 70mpbir 231 . . . . . . . . . 10 𝑦 ∈ { 1s }𝑦 ≤s 1s
7271olci 865 . . . . . . . . 9 (∃𝑥 ∈ { 0s } ({ 0s } |s { 1s }) ≤s 𝑥 ∨ ∃𝑦 ∈ { 1s }𝑦 ≤s 1s )
7318mptru 1544 . . . . . . . . . 10 { 0s } <<s { 1s }
74 snelpwi 5463 . . . . . . . . . . . 12 ( 0s No → { 0s } ∈ 𝒫 No )
755, 74ax-mp 5 . . . . . . . . . . 11 { 0s } ∈ 𝒫 No
76 nulssgt 27861 . . . . . . . . . . 11 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
7775, 76ax-mp 5 . . . . . . . . . 10 { 0s } <<s ∅
78 eqid 2740 . . . . . . . . . 10 ({ 0s } |s { 1s }) = ({ 0s } |s { 1s })
79 df-1s 27888 . . . . . . . . . 10 1s = ({ 0s } |s ∅)
80 sltrec 27883 . . . . . . . . . 10 ((({ 0s } <<s { 1s } ∧ { 0s } <<s ∅) ∧ (({ 0s } |s { 1s }) = ({ 0s } |s { 1s }) ∧ 1s = ({ 0s } |s ∅))) → (({ 0s } |s { 1s }) <s 1s ↔ (∃𝑥 ∈ { 0s } ({ 0s } |s { 1s }) ≤s 𝑥 ∨ ∃𝑦 ∈ { 1s }𝑦 ≤s 1s )))
8173, 77, 78, 79, 80mp4an 692 . . . . . . . . 9 (({ 0s } |s { 1s }) <s 1s ↔ (∃𝑥 ∈ { 0s } ({ 0s } |s { 1s }) ≤s 𝑥 ∨ ∃𝑦 ∈ { 1s }𝑦 ≤s 1s ))
8272, 81mpbir 231 . . . . . . . 8 ({ 0s } |s { 1s }) <s 1s
83 ovex 7481 . . . . . . . . 9 ({ 0s } |s { 1s }) ∈ V
84 breq1 5169 . . . . . . . . 9 (𝑦 = ({ 0s } |s { 1s }) → (𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s ))
8583, 84ralsn 4705 . . . . . . . 8 (∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s )
8682, 85mpbir 231 . . . . . . 7 𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s
87 snex 5451 . . . . . . . . . . 11 {({ 0s } |s { 1s })} ∈ V
8887a1i 11 . . . . . . . . . 10 (⊤ → {({ 0s } |s { 1s })} ∈ V)
89 snex 5451 . . . . . . . . . . 11 {(({ 0s } |s { 1s }) +s 1s )} ∈ V
9089a1i 11 . . . . . . . . . 10 (⊤ → {(({ 0s } |s { 1s }) +s 1s )} ∈ V)
9119snssd 4834 . . . . . . . . . 10 (⊤ → {({ 0s } |s { 1s })} ⊆ No )
928a1i 11 . . . . . . . . . . . 12 (⊤ → 1s No )
9319, 92addscld 28031 . . . . . . . . . . 11 (⊤ → (({ 0s } |s { 1s }) +s 1s ) ∈ No )
9493snssd 4834 . . . . . . . . . 10 (⊤ → {(({ 0s } |s { 1s }) +s 1s )} ⊆ No )
95 velsn 4664 . . . . . . . . . . . 12 (𝑥 ∈ {({ 0s } |s { 1s })} ↔ 𝑥 = ({ 0s } |s { 1s }))
96 velsn 4664 . . . . . . . . . . . 12 (𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} ↔ 𝑦 = (({ 0s } |s { 1s }) +s 1s ))
97 sltadd2 28042 . . . . . . . . . . . . . . . 16 (( 0s No ∧ 1s No ∧ ({ 0s } |s { 1s }) ∈ No ) → ( 0s <s 1s ↔ (({ 0s } |s { 1s }) +s 0s ) <s (({ 0s } |s { 1s }) +s 1s )))
985, 8, 20, 97mp3an 1461 . . . . . . . . . . . . . . 15 ( 0s <s 1s ↔ (({ 0s } |s { 1s }) +s 0s ) <s (({ 0s } |s { 1s }) +s 1s ))
9913, 98mpbi 230 . . . . . . . . . . . . . 14 (({ 0s } |s { 1s }) +s 0s ) <s (({ 0s } |s { 1s }) +s 1s )
10038, 99eqbrtrri 5189 . . . . . . . . . . . . 13 ({ 0s } |s { 1s }) <s (({ 0s } |s { 1s }) +s 1s )
101 breq12 5171 . . . . . . . . . . . . 13 ((𝑥 = ({ 0s } |s { 1s }) ∧ 𝑦 = (({ 0s } |s { 1s }) +s 1s )) → (𝑥 <s 𝑦 ↔ ({ 0s } |s { 1s }) <s (({ 0s } |s { 1s }) +s 1s )))
102100, 101mpbiri 258 . . . . . . . . . . . 12 ((𝑥 = ({ 0s } |s { 1s }) ∧ 𝑦 = (({ 0s } |s { 1s }) +s 1s )) → 𝑥 <s 𝑦)
10395, 96, 102syl2anb 597 . . . . . . . . . . 11 ((𝑥 ∈ {({ 0s } |s { 1s })} ∧ 𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )}) → 𝑥 <s 𝑦)
1041033adant1 1130 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ {({ 0s } |s { 1s })} ∧ 𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )}) → 𝑥 <s 𝑦)
10588, 90, 91, 94, 104ssltd 27854 . . . . . . . . 9 (⊤ → {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )})
106105mptru 1544 . . . . . . . 8 {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )}
107 eqid 2740 . . . . . . . 8 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
108 slerec 27882 . . . . . . . 8 ((({({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )} ∧ { 0s } <<s ∅) ∧ (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∧ 1s = ({ 0s } |s ∅))) → (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s )))
109106, 77, 107, 79, 108mp4an 692 . . . . . . 7 (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ))
11066, 86, 109mpbir2an 710 . . . . . 6 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s
111 addslid 28019 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
1128, 111ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
113 slerflex 27826 . . . . . . . . . . . . . 14 ( 0s No → 0s ≤s 0s )
1145, 113ax-mp 5 . . . . . . . . . . . . 13 0s ≤s 0s
115 breq2 5170 . . . . . . . . . . . . . 14 (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ))
11626, 115rexsn 4706 . . . . . . . . . . . . 13 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
117114, 116mpbir 231 . . . . . . . . . . . 12 𝑥 ∈ { 0s } 0s ≤s 𝑥
118117orci 864 . . . . . . . . . . 11 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({ 0s } |s { 1s }))
119 0elpw 5374 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 No
120 nulssgt 27861 . . . . . . . . . . . . 13 (∅ ∈ 𝒫 No → ∅ <<s ∅)
121119, 120ax-mp 5 . . . . . . . . . . . 12 ∅ <<s ∅
122 df-0s 27887 . . . . . . . . . . . 12 0s = (∅ |s ∅)
123 sltrec 27883 . . . . . . . . . . . 12 (((∅ <<s ∅ ∧ { 0s } <<s { 1s }) ∧ ( 0s = (∅ |s ∅) ∧ ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))) → ( 0s <s ({ 0s } |s { 1s }) ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({ 0s } |s { 1s }))))
124121, 73, 122, 78, 123mp4an 692 . . . . . . . . . . 11 ( 0s <s ({ 0s } |s { 1s }) ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({ 0s } |s { 1s })))
125118, 124mpbir 231 . . . . . . . . . 10 0s <s ({ 0s } |s { 1s })
126 sltadd1 28043 . . . . . . . . . . 11 (( 0s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ 1s No ) → ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )))
1275, 20, 8, 126mp3an 1461 . . . . . . . . . 10 ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s ))
128125, 127mpbi 230 . . . . . . . . 9 ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )
129112, 128eqbrtrri 5189 . . . . . . . 8 1s <s (({ 0s } |s { 1s }) +s 1s )
130 ovex 7481 . . . . . . . . 9 (({ 0s } |s { 1s }) +s 1s ) ∈ V
131 breq2 5170 . . . . . . . . 9 (𝑦 = (({ 0s } |s { 1s }) +s 1s ) → ( 1s <s 𝑦 ↔ 1s <s (({ 0s } |s { 1s }) +s 1s )))
132130, 131ralsn 4705 . . . . . . . 8 (∀𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦 ↔ 1s <s (({ 0s } |s { 1s }) +s 1s ))
133129, 132mpbir 231 . . . . . . 7 𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦
134 breq2 5170 . . . . . . . . . . . . . 14 (𝑥 = 1s → ( 0s <s 𝑥 ↔ 0s <s 1s ))
13547, 134ralsn 4705 . . . . . . . . . . . . 13 (∀𝑥 ∈ { 1s } 0s <s 𝑥 ↔ 0s <s 1s )
13613, 135mpbir 231 . . . . . . . . . . . 12 𝑥 ∈ { 1s } 0s <s 𝑥
137 ral0 4536 . . . . . . . . . . . 12 𝑦 ∈ ∅ 𝑦 <s ({ 0s } |s { 1s })
138 slerec 27882 . . . . . . . . . . . . 13 (((∅ <<s ∅ ∧ { 0s } <<s { 1s }) ∧ ( 0s = (∅ |s ∅) ∧ ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))) → ( 0s ≤s ({ 0s } |s { 1s }) ↔ (∀𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀𝑦 ∈ ∅ 𝑦 <s ({ 0s } |s { 1s }))))
139121, 73, 122, 78, 138mp4an 692 . . . . . . . . . . . 12 ( 0s ≤s ({ 0s } |s { 1s }) ↔ (∀𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀𝑦 ∈ ∅ 𝑦 <s ({ 0s } |s { 1s })))
140136, 137, 139mpbir2an 710 . . . . . . . . . . 11 0s ≤s ({ 0s } |s { 1s })
141 breq2 5170 . . . . . . . . . . . 12 (𝑥 = ({ 0s } |s { 1s }) → ( 0s ≤s 𝑥 ↔ 0s ≤s ({ 0s } |s { 1s })))
14283, 141rexsn 4706 . . . . . . . . . . 11 (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ↔ 0s ≤s ({ 0s } |s { 1s }))
143140, 142mpbir 231 . . . . . . . . . 10 𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥
144143orci 864 . . . . . . . . 9 (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))
145 sltrec 27883 . . . . . . . . . 10 (((∅ <<s ∅ ∧ {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )}) ∧ ( 0s = (∅ |s ∅) ∧ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))) → ( 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))))
146121, 106, 122, 107, 145mp4an 692 . . . . . . . . 9 ( 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
147144, 146mpbir 231 . . . . . . . 8 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
148 breq1 5169 . . . . . . . . 9 (𝑥 = 0s → (𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
14926, 148ralsn 4705 . . . . . . . 8 (∀𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))
150147, 149mpbir 231 . . . . . . 7 𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
151 slerec 27882 . . . . . . . 8 ((({ 0s } <<s ∅ ∧ {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )}) ∧ ( 1s = ({ 0s } |s ∅) ∧ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))) → ( 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∀𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦 ∧ ∀𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))))
15277, 106, 79, 107, 151mp4an 692 . . . . . . 7 ( 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∀𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦 ∧ ∀𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
153133, 150, 152mpbir2an 710 . . . . . 6 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
154105scutcld 27866 . . . . . . . 8 (⊤ → ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∈ No )
155154mptru 1544 . . . . . . 7 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∈ No
156 sletri3 27818 . . . . . . 7 ((({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∈ No ∧ 1s No ) → (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = 1s ↔ (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))))
157155, 8, 156mp2an 691 . . . . . 6 (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = 1s ↔ (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
158110, 153, 157mpbir2an 710 . . . . 5 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = 1s
15965, 158eqtri 2768 . . . 4 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = 1s
16025, 159eqtri 2768 . . 3 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = 1s
16122, 160eqtri 2768 . 2 (2s ·s ({ 0s } |s { 1s })) = 1s
162 2sno 28421 . . . . 5 2s No
163 2ne0s 28422 . . . . 5 2s ≠ 0s
164162, 163pm3.2i 470 . . . 4 (2s No ∧ 2s ≠ 0s )
1658, 20, 1643pm3.2i 1339 . . 3 ( 1s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ (2s No ∧ 2s ≠ 0s ))
166 oveq2 7456 . . . . . 6 (𝑥 = ({ 0s } |s { 1s }) → (2s ·s 𝑥) = (2s ·s ({ 0s } |s { 1s })))
167166eqeq1d 2742 . . . . 5 (𝑥 = ({ 0s } |s { 1s }) → ((2s ·s 𝑥) = 1s ↔ (2s ·s ({ 0s } |s { 1s })) = 1s ))
168167rspcev 3635 . . . 4 ((({ 0s } |s { 1s }) ∈ No ∧ (2s ·s ({ 0s } |s { 1s })) = 1s ) → ∃𝑥 No (2s ·s 𝑥) = 1s )
16920, 161, 168mp2an 691 . . 3 𝑥 No (2s ·s 𝑥) = 1s
170 divsmulw 28236 . . 3 ((( 1s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ (2s No ∧ 2s ≠ 0s )) ∧ ∃𝑥 No (2s ·s 𝑥) = 1s ) → (( 1s /su 2s) = ({ 0s } |s { 1s }) ↔ (2s ·s ({ 0s } |s { 1s })) = 1s ))
171165, 169, 170mp2an 691 . 2 (( 1s /su 2s) = ({ 0s } |s { 1s }) ↔ (2s ·s ({ 0s } |s { 1s })) = 1s )
172161, 171mpbir 231 1 ( 1s /su 2s) = ({ 0s } |s { 1s })
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   ≤s csle 27807   <<s csslt 27843   |s cscut 27845   0s c0s 27885   1s c1s 27886   +s cadds 28010   ·s cmuls 28150   /su cdivs 28231  2sc2s 28412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232  df-n0s 28338  df-nns 28339  df-2s 28413
This theorem is referenced by:  cutpw2  28435
  Copyright terms: Public domain W3C validator