| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nohalf | Structured version Visualization version GIF version | ||
| Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.) |
| Ref | Expression |
|---|---|
| nohalf | ⊢ ( 1s /su 2s) = ({ 0s } |s { 1s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | twocut 28333 | . . 3 ⊢ (2s ·s ({ 0s } |s { 1s })) = 1s | |
| 2 | 1sno 27759 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1s ∈ No ) |
| 4 | 0sno 27758 | . . . . . . 7 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0s ∈ No ) |
| 6 | 0slt1s 27761 | . . . . . . 7 ⊢ 0s <s 1s | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0s <s 1s ) |
| 8 | 5, 3, 7 | ssltsn 27721 | . . . . 5 ⊢ (⊤ → { 0s } <<s { 1s }) |
| 9 | 8 | scutcld 27732 | . . . 4 ⊢ (⊤ → ({ 0s } |s { 1s }) ∈ No ) |
| 10 | 2sno 28329 | . . . . 5 ⊢ 2s ∈ No | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 2s ∈ No ) |
| 12 | 2ne0s 28330 | . . . . 5 ⊢ 2s ≠ 0s | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (⊤ → 2s ≠ 0s ) |
| 14 | oveq2 7361 | . . . . . 6 ⊢ (𝑥 = ({ 0s } |s { 1s }) → (2s ·s 𝑥) = (2s ·s ({ 0s } |s { 1s }))) | |
| 15 | 14 | eqeq1d 2731 | . . . . 5 ⊢ (𝑥 = ({ 0s } |s { 1s }) → ((2s ·s 𝑥) = 1s ↔ (2s ·s ({ 0s } |s { 1s })) = 1s )) |
| 16 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → (2s ·s ({ 0s } |s { 1s })) = 1s ) |
| 17 | 15, 9, 16 | rspcedvdw 3582 | . . . 4 ⊢ (⊤ → ∃𝑥 ∈ No (2s ·s 𝑥) = 1s ) |
| 18 | 3, 9, 11, 13, 17 | divsmulwd 28120 | . . 3 ⊢ (⊤ → (( 1s /su 2s) = ({ 0s } |s { 1s }) ↔ (2s ·s ({ 0s } |s { 1s })) = 1s )) |
| 19 | 1, 18 | mpbiri 258 | . 2 ⊢ (⊤ → ( 1s /su 2s) = ({ 0s } |s { 1s })) |
| 20 | 19 | mptru 1547 | 1 ⊢ ( 1s /su 2s) = ({ 0s } |s { 1s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 {csn 4579 class class class wbr 5095 (class class class)co 7353 No csur 27567 <s cslt 27568 |s cscut 27711 0s c0s 27754 1s c1s 27755 ·s cmuls 28032 /su cdivs 28113 2sc2s 28320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sle 27673 df-sslt 27710 df-scut 27712 df-0s 27756 df-1s 27757 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-norec2 27879 df-adds 27890 df-negs 27950 df-subs 27951 df-muls 28033 df-divs 28114 df-n0s 28231 df-nns 28232 df-2s 28321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |