| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nohalf | Structured version Visualization version GIF version | ||
| Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.) |
| Ref | Expression |
|---|---|
| nohalf | ⊢ ( 1s /su 2s) = ({ 0s } |s { 1s }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | twocut 28344 | . . 3 ⊢ (2s ·s ({ 0s } |s { 1s })) = 1s | |
| 2 | 1sno 27769 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → 1s ∈ No ) |
| 4 | 0sno 27768 | . . . . . . 7 ⊢ 0s ∈ No | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0s ∈ No ) |
| 6 | 0slt1s 27771 | . . . . . . 7 ⊢ 0s <s 1s | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → 0s <s 1s ) |
| 8 | 5, 3, 7 | ssltsn 27731 | . . . . 5 ⊢ (⊤ → { 0s } <<s { 1s }) |
| 9 | 8 | scutcld 27742 | . . . 4 ⊢ (⊤ → ({ 0s } |s { 1s }) ∈ No ) |
| 10 | 2sno 28340 | . . . . 5 ⊢ 2s ∈ No | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 2s ∈ No ) |
| 12 | 2ne0s 28341 | . . . . 5 ⊢ 2s ≠ 0s | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (⊤ → 2s ≠ 0s ) |
| 14 | oveq2 7354 | . . . . . 6 ⊢ (𝑥 = ({ 0s } |s { 1s }) → (2s ·s 𝑥) = (2s ·s ({ 0s } |s { 1s }))) | |
| 15 | 14 | eqeq1d 2733 | . . . . 5 ⊢ (𝑥 = ({ 0s } |s { 1s }) → ((2s ·s 𝑥) = 1s ↔ (2s ·s ({ 0s } |s { 1s })) = 1s )) |
| 16 | 1 | a1i 11 | . . . . 5 ⊢ (⊤ → (2s ·s ({ 0s } |s { 1s })) = 1s ) |
| 17 | 15, 9, 16 | rspcedvdw 3580 | . . . 4 ⊢ (⊤ → ∃𝑥 ∈ No (2s ·s 𝑥) = 1s ) |
| 18 | 3, 9, 11, 13, 17 | divsmulwd 28131 | . . 3 ⊢ (⊤ → (( 1s /su 2s) = ({ 0s } |s { 1s }) ↔ (2s ·s ({ 0s } |s { 1s })) = 1s )) |
| 19 | 1, 18 | mpbiri 258 | . 2 ⊢ (⊤ → ( 1s /su 2s) = ({ 0s } |s { 1s })) |
| 20 | 19 | mptru 1548 | 1 ⊢ ( 1s /su 2s) = ({ 0s } |s { 1s }) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 {csn 4576 class class class wbr 5091 (class class class)co 7346 No csur 27576 <s cslt 27577 |s cscut 27720 0s c0s 27764 1s c1s 27765 ·s cmuls 28043 /su cdivs 28124 2sc2s 28331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-1s 27767 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-subs 27962 df-muls 28044 df-divs 28125 df-n0s 28242 df-nns 28243 df-2s 28332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |