MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nohalf Structured version   Visualization version   GIF version

Theorem nohalf 28422
Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025.)
Assertion
Ref Expression
nohalf ( 1s /su 2s) = ({ 0s } |s { 1s })

Proof of Theorem nohalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5442 . . . . . . . 8 { 0s } ∈ V
21a1i 11 . . . . . . 7 (⊤ → { 0s } ∈ V)
3 snex 5442 . . . . . . . 8 { 1s } ∈ V
43a1i 11 . . . . . . 7 (⊤ → { 1s } ∈ V)
5 0sno 27886 . . . . . . . . 9 0s No
65a1i 11 . . . . . . . 8 (⊤ → 0s No )
76snssd 4814 . . . . . . 7 (⊤ → { 0s } ⊆ No )
8 1sno 27887 . . . . . . . 8 1s No
9 snssi 4813 . . . . . . . 8 ( 1s No → { 1s } ⊆ No )
108, 9mp1i 13 . . . . . . 7 (⊤ → { 1s } ⊆ No )
11 velsn 4647 . . . . . . . . 9 (𝑥 ∈ { 0s } ↔ 𝑥 = 0s )
12 velsn 4647 . . . . . . . . 9 (𝑦 ∈ { 1s } ↔ 𝑦 = 1s )
13 0slt1s 27889 . . . . . . . . . 10 0s <s 1s
14 breq12 5153 . . . . . . . . . 10 ((𝑥 = 0s𝑦 = 1s ) → (𝑥 <s 𝑦 ↔ 0s <s 1s ))
1513, 14mpbiri 258 . . . . . . . . 9 ((𝑥 = 0s𝑦 = 1s ) → 𝑥 <s 𝑦)
1611, 12, 15syl2anb 598 . . . . . . . 8 ((𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s }) → 𝑥 <s 𝑦)
17163adant1 1129 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s }) → 𝑥 <s 𝑦)
182, 4, 7, 10, 17ssltd 27851 . . . . . 6 (⊤ → { 0s } <<s { 1s })
1918scutcld 27863 . . . . 5 (⊤ → ({ 0s } |s { 1s }) ∈ No )
2019mptru 1544 . . . 4 ({ 0s } |s { 1s }) ∈ No
21 no2times 28416 . . . 4 (({ 0s } |s { 1s }) ∈ No → (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })))
2220, 21ax-mp 5 . . 3 (2s ·s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s }))
23 eqidd 2736 . . . . . 6 (⊤ → ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))
2418, 18, 23, 23addsunif 28050 . . . . 5 (⊤ → (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})))
2524mptru 1544 . . . 4 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}))
265elexi 3501 . . . . . . . . . . 11 0s ∈ V
27 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = 0s → (𝑦 +s ({ 0s } |s { 1s })) = ( 0s +s ({ 0s } |s { 1s })))
28 addslid 28016 . . . . . . . . . . . . . 14 (({ 0s } |s { 1s }) ∈ No → ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s }))
2920, 28ax-mp 5 . . . . . . . . . . . . 13 ( 0s +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s })
3027, 29eqtrdi 2791 . . . . . . . . . . . 12 (𝑦 = 0s → (𝑦 +s ({ 0s } |s { 1s })) = ({ 0s } |s { 1s }))
3130eqeq2d 2746 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s })))
3226, 31rexsn 4687 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = ({ 0s } |s { 1s }))
3332abbii 2807 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = ({ 0s } |s { 1s })}
34 df-sn 4632 . . . . . . . . 9 {({ 0s } |s { 1s })} = {𝑥𝑥 = ({ 0s } |s { 1s })}
3533, 34eqtr4i 2766 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {({ 0s } |s { 1s })}
36 oveq2 7439 . . . . . . . . . . . . 13 (𝑦 = 0s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 0s ))
37 addsrid 28012 . . . . . . . . . . . . . 14 (({ 0s } |s { 1s }) ∈ No → (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s }))
3820, 37ax-mp 5 . . . . . . . . . . . . 13 (({ 0s } |s { 1s }) +s 0s ) = ({ 0s } |s { 1s })
3936, 38eqtrdi 2791 . . . . . . . . . . . 12 (𝑦 = 0s → (({ 0s } |s { 1s }) +s 𝑦) = ({ 0s } |s { 1s }))
4039eqeq2d 2746 . . . . . . . . . . 11 (𝑦 = 0s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s })))
4126, 40rexsn 4687 . . . . . . . . . 10 (∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = ({ 0s } |s { 1s }))
4241abbii 2807 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = ({ 0s } |s { 1s })}
4342, 34eqtr4i 2766 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {({ 0s } |s { 1s })}
4435, 43uneq12i 4176 . . . . . . 7 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })})
45 unidm 4167 . . . . . . 7 ({({ 0s } |s { 1s })} ∪ {({ 0s } |s { 1s })}) = {({ 0s } |s { 1s })}
4644, 45eqtri 2763 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {({ 0s } |s { 1s })}
478elexi 3501 . . . . . . . . . . 11 1s ∈ V
48 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = 1s → (𝑦 +s ({ 0s } |s { 1s })) = ( 1s +s ({ 0s } |s { 1s })))
49 addscom 28014 . . . . . . . . . . . . . 14 (( 1s No ∧ ({ 0s } |s { 1s }) ∈ No ) → ( 1s +s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s 1s ))
508, 20, 49mp2an 692 . . . . . . . . . . . . 13 ( 1s +s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s 1s )
5148, 50eqtrdi 2791 . . . . . . . . . . . 12 (𝑦 = 1s → (𝑦 +s ({ 0s } |s { 1s })) = (({ 0s } |s { 1s }) +s 1s ))
5251eqeq2d 2746 . . . . . . . . . . 11 (𝑦 = 1s → (𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s )))
5347, 52rexsn 4687 . . . . . . . . . 10 (∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s })) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s ))
5453abbii 2807 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {𝑥𝑥 = (({ 0s } |s { 1s }) +s 1s )}
55 df-sn 4632 . . . . . . . . 9 {(({ 0s } |s { 1s }) +s 1s )} = {𝑥𝑥 = (({ 0s } |s { 1s }) +s 1s )}
5654, 55eqtr4i 2766 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} = {(({ 0s } |s { 1s }) +s 1s )}
57 oveq2 7439 . . . . . . . . . . . 12 (𝑦 = 1s → (({ 0s } |s { 1s }) +s 𝑦) = (({ 0s } |s { 1s }) +s 1s ))
5857eqeq2d 2746 . . . . . . . . . . 11 (𝑦 = 1s → (𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s )))
5947, 58rexsn 4687 . . . . . . . . . 10 (∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦) ↔ 𝑥 = (({ 0s } |s { 1s }) +s 1s ))
6059abbii 2807 . . . . . . . . 9 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {𝑥𝑥 = (({ 0s } |s { 1s }) +s 1s )}
6160, 55eqtr4i 2766 . . . . . . . 8 {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)} = {(({ 0s } |s { 1s }) +s 1s )}
6256, 61uneq12i 4176 . . . . . . 7 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = ({(({ 0s } |s { 1s }) +s 1s )} ∪ {(({ 0s } |s { 1s }) +s 1s )})
63 unidm 4167 . . . . . . 7 ({(({ 0s } |s { 1s }) +s 1s )} ∪ {(({ 0s } |s { 1s }) +s 1s )}) = {(({ 0s } |s { 1s }) +s 1s )}
6462, 63eqtri 2763 . . . . . 6 ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) = {(({ 0s } |s { 1s }) +s 1s )}
6546, 64oveq12i 7443 . . . . 5 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
66 ral0 4519 . . . . . . 7 𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) <s 𝑥
67 slerflex 27823 . . . . . . . . . . . 12 ( 1s No → 1s ≤s 1s )
688, 67ax-mp 5 . . . . . . . . . . 11 1s ≤s 1s
69 breq1 5151 . . . . . . . . . . . 12 (𝑦 = 1s → (𝑦 ≤s 1s ↔ 1s ≤s 1s ))
7047, 69rexsn 4687 . . . . . . . . . . 11 (∃𝑦 ∈ { 1s }𝑦 ≤s 1s ↔ 1s ≤s 1s )
7168, 70mpbir 231 . . . . . . . . . 10 𝑦 ∈ { 1s }𝑦 ≤s 1s
7271olci 866 . . . . . . . . 9 (∃𝑥 ∈ { 0s } ({ 0s } |s { 1s }) ≤s 𝑥 ∨ ∃𝑦 ∈ { 1s }𝑦 ≤s 1s )
7318mptru 1544 . . . . . . . . . 10 { 0s } <<s { 1s }
74 snelpwi 5454 . . . . . . . . . . . 12 ( 0s No → { 0s } ∈ 𝒫 No )
755, 74ax-mp 5 . . . . . . . . . . 11 { 0s } ∈ 𝒫 No
76 nulssgt 27858 . . . . . . . . . . 11 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
7775, 76ax-mp 5 . . . . . . . . . 10 { 0s } <<s ∅
78 eqid 2735 . . . . . . . . . 10 ({ 0s } |s { 1s }) = ({ 0s } |s { 1s })
79 df-1s 27885 . . . . . . . . . 10 1s = ({ 0s } |s ∅)
80 sltrec 27880 . . . . . . . . . 10 ((({ 0s } <<s { 1s } ∧ { 0s } <<s ∅) ∧ (({ 0s } |s { 1s }) = ({ 0s } |s { 1s }) ∧ 1s = ({ 0s } |s ∅))) → (({ 0s } |s { 1s }) <s 1s ↔ (∃𝑥 ∈ { 0s } ({ 0s } |s { 1s }) ≤s 𝑥 ∨ ∃𝑦 ∈ { 1s }𝑦 ≤s 1s )))
8173, 77, 78, 79, 80mp4an 693 . . . . . . . . 9 (({ 0s } |s { 1s }) <s 1s ↔ (∃𝑥 ∈ { 0s } ({ 0s } |s { 1s }) ≤s 𝑥 ∨ ∃𝑦 ∈ { 1s }𝑦 ≤s 1s ))
8272, 81mpbir 231 . . . . . . . 8 ({ 0s } |s { 1s }) <s 1s
83 ovex 7464 . . . . . . . . 9 ({ 0s } |s { 1s }) ∈ V
84 breq1 5151 . . . . . . . . 9 (𝑦 = ({ 0s } |s { 1s }) → (𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s ))
8583, 84ralsn 4686 . . . . . . . 8 (∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ↔ ({ 0s } |s { 1s }) <s 1s )
8682, 85mpbir 231 . . . . . . 7 𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s
87 snex 5442 . . . . . . . . . . 11 {({ 0s } |s { 1s })} ∈ V
8887a1i 11 . . . . . . . . . 10 (⊤ → {({ 0s } |s { 1s })} ∈ V)
89 snex 5442 . . . . . . . . . . 11 {(({ 0s } |s { 1s }) +s 1s )} ∈ V
9089a1i 11 . . . . . . . . . 10 (⊤ → {(({ 0s } |s { 1s }) +s 1s )} ∈ V)
9119snssd 4814 . . . . . . . . . 10 (⊤ → {({ 0s } |s { 1s })} ⊆ No )
928a1i 11 . . . . . . . . . . . 12 (⊤ → 1s No )
9319, 92addscld 28028 . . . . . . . . . . 11 (⊤ → (({ 0s } |s { 1s }) +s 1s ) ∈ No )
9493snssd 4814 . . . . . . . . . 10 (⊤ → {(({ 0s } |s { 1s }) +s 1s )} ⊆ No )
95 velsn 4647 . . . . . . . . . . . 12 (𝑥 ∈ {({ 0s } |s { 1s })} ↔ 𝑥 = ({ 0s } |s { 1s }))
96 velsn 4647 . . . . . . . . . . . 12 (𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} ↔ 𝑦 = (({ 0s } |s { 1s }) +s 1s ))
97 sltadd2 28039 . . . . . . . . . . . . . . . 16 (( 0s No ∧ 1s No ∧ ({ 0s } |s { 1s }) ∈ No ) → ( 0s <s 1s ↔ (({ 0s } |s { 1s }) +s 0s ) <s (({ 0s } |s { 1s }) +s 1s )))
985, 8, 20, 97mp3an 1460 . . . . . . . . . . . . . . 15 ( 0s <s 1s ↔ (({ 0s } |s { 1s }) +s 0s ) <s (({ 0s } |s { 1s }) +s 1s ))
9913, 98mpbi 230 . . . . . . . . . . . . . 14 (({ 0s } |s { 1s }) +s 0s ) <s (({ 0s } |s { 1s }) +s 1s )
10038, 99eqbrtrri 5171 . . . . . . . . . . . . 13 ({ 0s } |s { 1s }) <s (({ 0s } |s { 1s }) +s 1s )
101 breq12 5153 . . . . . . . . . . . . 13 ((𝑥 = ({ 0s } |s { 1s }) ∧ 𝑦 = (({ 0s } |s { 1s }) +s 1s )) → (𝑥 <s 𝑦 ↔ ({ 0s } |s { 1s }) <s (({ 0s } |s { 1s }) +s 1s )))
102100, 101mpbiri 258 . . . . . . . . . . . 12 ((𝑥 = ({ 0s } |s { 1s }) ∧ 𝑦 = (({ 0s } |s { 1s }) +s 1s )) → 𝑥 <s 𝑦)
10395, 96, 102syl2anb 598 . . . . . . . . . . 11 ((𝑥 ∈ {({ 0s } |s { 1s })} ∧ 𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )}) → 𝑥 <s 𝑦)
1041033adant1 1129 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ {({ 0s } |s { 1s })} ∧ 𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )}) → 𝑥 <s 𝑦)
10588, 90, 91, 94, 104ssltd 27851 . . . . . . . . 9 (⊤ → {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )})
106105mptru 1544 . . . . . . . 8 {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )}
107 eqid 2735 . . . . . . . 8 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
108 slerec 27879 . . . . . . . 8 ((({({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )} ∧ { 0s } <<s ∅) ∧ (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∧ 1s = ({ 0s } |s ∅))) → (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s )))
109106, 77, 107, 79, 108mp4an 693 . . . . . . 7 (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ↔ (∀𝑥 ∈ ∅ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) <s 𝑥 ∧ ∀𝑦 ∈ {({ 0s } |s { 1s })}𝑦 <s 1s ))
11066, 86, 109mpbir2an 711 . . . . . 6 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s
111 addslid 28016 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
1128, 111ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
113 slerflex 27823 . . . . . . . . . . . . . 14 ( 0s No → 0s ≤s 0s )
1145, 113ax-mp 5 . . . . . . . . . . . . 13 0s ≤s 0s
115 breq2 5152 . . . . . . . . . . . . . 14 (𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ))
11626, 115rexsn 4687 . . . . . . . . . . . . 13 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
117114, 116mpbir 231 . . . . . . . . . . . 12 𝑥 ∈ { 0s } 0s ≤s 𝑥
118117orci 865 . . . . . . . . . . 11 (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({ 0s } |s { 1s }))
119 0elpw 5362 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 No
120 nulssgt 27858 . . . . . . . . . . . . 13 (∅ ∈ 𝒫 No → ∅ <<s ∅)
121119, 120ax-mp 5 . . . . . . . . . . . 12 ∅ <<s ∅
122 df-0s 27884 . . . . . . . . . . . 12 0s = (∅ |s ∅)
123 sltrec 27880 . . . . . . . . . . . 12 (((∅ <<s ∅ ∧ { 0s } <<s { 1s }) ∧ ( 0s = (∅ |s ∅) ∧ ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))) → ( 0s <s ({ 0s } |s { 1s }) ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({ 0s } |s { 1s }))))
124121, 73, 122, 78, 123mp4an 693 . . . . . . . . . . 11 ( 0s <s ({ 0s } |s { 1s }) ↔ (∃𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({ 0s } |s { 1s })))
125118, 124mpbir 231 . . . . . . . . . 10 0s <s ({ 0s } |s { 1s })
126 sltadd1 28040 . . . . . . . . . . 11 (( 0s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ 1s No ) → ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )))
1275, 20, 8, 126mp3an 1460 . . . . . . . . . 10 ( 0s <s ({ 0s } |s { 1s }) ↔ ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s ))
128125, 127mpbi 230 . . . . . . . . 9 ( 0s +s 1s ) <s (({ 0s } |s { 1s }) +s 1s )
129112, 128eqbrtrri 5171 . . . . . . . 8 1s <s (({ 0s } |s { 1s }) +s 1s )
130 ovex 7464 . . . . . . . . 9 (({ 0s } |s { 1s }) +s 1s ) ∈ V
131 breq2 5152 . . . . . . . . 9 (𝑦 = (({ 0s } |s { 1s }) +s 1s ) → ( 1s <s 𝑦 ↔ 1s <s (({ 0s } |s { 1s }) +s 1s )))
132130, 131ralsn 4686 . . . . . . . 8 (∀𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦 ↔ 1s <s (({ 0s } |s { 1s }) +s 1s ))
133129, 132mpbir 231 . . . . . . 7 𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦
134 breq2 5152 . . . . . . . . . . . . . 14 (𝑥 = 1s → ( 0s <s 𝑥 ↔ 0s <s 1s ))
13547, 134ralsn 4686 . . . . . . . . . . . . 13 (∀𝑥 ∈ { 1s } 0s <s 𝑥 ↔ 0s <s 1s )
13613, 135mpbir 231 . . . . . . . . . . . 12 𝑥 ∈ { 1s } 0s <s 𝑥
137 ral0 4519 . . . . . . . . . . . 12 𝑦 ∈ ∅ 𝑦 <s ({ 0s } |s { 1s })
138 slerec 27879 . . . . . . . . . . . . 13 (((∅ <<s ∅ ∧ { 0s } <<s { 1s }) ∧ ( 0s = (∅ |s ∅) ∧ ({ 0s } |s { 1s }) = ({ 0s } |s { 1s }))) → ( 0s ≤s ({ 0s } |s { 1s }) ↔ (∀𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀𝑦 ∈ ∅ 𝑦 <s ({ 0s } |s { 1s }))))
139121, 73, 122, 78, 138mp4an 693 . . . . . . . . . . . 12 ( 0s ≤s ({ 0s } |s { 1s }) ↔ (∀𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀𝑦 ∈ ∅ 𝑦 <s ({ 0s } |s { 1s })))
140136, 137, 139mpbir2an 711 . . . . . . . . . . 11 0s ≤s ({ 0s } |s { 1s })
141 breq2 5152 . . . . . . . . . . . 12 (𝑥 = ({ 0s } |s { 1s }) → ( 0s ≤s 𝑥 ↔ 0s ≤s ({ 0s } |s { 1s })))
14283, 141rexsn 4687 . . . . . . . . . . 11 (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ↔ 0s ≤s ({ 0s } |s { 1s }))
143140, 142mpbir 231 . . . . . . . . . 10 𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥
144143orci 865 . . . . . . . . 9 (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))
145 sltrec 27880 . . . . . . . . . 10 (((∅ <<s ∅ ∧ {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )}) ∧ ( 0s = (∅ |s ∅) ∧ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))) → ( 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))))
146121, 106, 122, 107, 145mp4an 693 . . . . . . . . 9 ( 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∃𝑥 ∈ {({ 0s } |s { 1s })} 0s ≤s 𝑥 ∨ ∃𝑦 ∈ ∅ 𝑦 ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
147144, 146mpbir 231 . . . . . . . 8 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
148 breq1 5151 . . . . . . . . 9 (𝑥 = 0s → (𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
14926, 148ralsn 4686 . . . . . . . 8 (∀𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ 0s <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))
150147, 149mpbir 231 . . . . . . 7 𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
151 slerec 27879 . . . . . . . 8 ((({ 0s } <<s ∅ ∧ {({ 0s } |s { 1s })} <<s {(({ 0s } |s { 1s }) +s 1s )}) ∧ ( 1s = ({ 0s } |s ∅) ∧ ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))) → ( 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∀𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦 ∧ ∀𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))))
15277, 106, 79, 107, 151mp4an 693 . . . . . . 7 ( 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ↔ (∀𝑦 ∈ {(({ 0s } |s { 1s }) +s 1s )} 1s <s 𝑦 ∧ ∀𝑥 ∈ { 0s }𝑥 <s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
153133, 150, 152mpbir2an 711 . . . . . 6 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})
154105scutcld 27863 . . . . . . . 8 (⊤ → ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∈ No )
155154mptru 1544 . . . . . . 7 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∈ No
156 sletri3 27815 . . . . . . 7 ((({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ∈ No ∧ 1s No ) → (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = 1s ↔ (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}))))
157155, 8, 156mp2an 692 . . . . . 6 (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = 1s ↔ (({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) ≤s 1s ∧ 1s ≤s ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )})))
158110, 153, 157mpbir2an 711 . . . . 5 ({({ 0s } |s { 1s })} |s {(({ 0s } |s { 1s }) +s 1s )}) = 1s
15965, 158eqtri 2763 . . . 4 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (𝑦 +s ({ 0s } |s { 1s }))} ∪ {𝑥 ∣ ∃𝑦 ∈ { 1s }𝑥 = (({ 0s } |s { 1s }) +s 𝑦)})) = 1s
16025, 159eqtri 2763 . . 3 (({ 0s } |s { 1s }) +s ({ 0s } |s { 1s })) = 1s
16122, 160eqtri 2763 . 2 (2s ·s ({ 0s } |s { 1s })) = 1s
162 2sno 28418 . . . . 5 2s No
163 2ne0s 28419 . . . . 5 2s ≠ 0s
164162, 163pm3.2i 470 . . . 4 (2s No ∧ 2s ≠ 0s )
1658, 20, 1643pm3.2i 1338 . . 3 ( 1s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ (2s No ∧ 2s ≠ 0s ))
166 oveq2 7439 . . . . . 6 (𝑥 = ({ 0s } |s { 1s }) → (2s ·s 𝑥) = (2s ·s ({ 0s } |s { 1s })))
167166eqeq1d 2737 . . . . 5 (𝑥 = ({ 0s } |s { 1s }) → ((2s ·s 𝑥) = 1s ↔ (2s ·s ({ 0s } |s { 1s })) = 1s ))
168167rspcev 3622 . . . 4 ((({ 0s } |s { 1s }) ∈ No ∧ (2s ·s ({ 0s } |s { 1s })) = 1s ) → ∃𝑥 No (2s ·s 𝑥) = 1s )
16920, 161, 168mp2an 692 . . 3 𝑥 No (2s ·s 𝑥) = 1s
170 divsmulw 28233 . . 3 ((( 1s No ∧ ({ 0s } |s { 1s }) ∈ No ∧ (2s No ∧ 2s ≠ 0s )) ∧ ∃𝑥 No (2s ·s 𝑥) = 1s ) → (( 1s /su 2s) = ({ 0s } |s { 1s }) ↔ (2s ·s ({ 0s } |s { 1s })) = 1s ))
171165, 169, 170mp2an 692 . 2 (( 1s /su 2s) = ({ 0s } |s { 1s }) ↔ (2s ·s ({ 0s } |s { 1s })) = 1s )
172161, 171mpbir 231 1 ( 1s /su 2s) = ({ 0s } |s { 1s })
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wtru 1538  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cun 3961  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  (class class class)co 7431   No csur 27699   <s cslt 27700   ≤s csle 27804   <<s csslt 27840   |s cscut 27842   0s c0s 27882   1s c1s 27883   +s cadds 28007   ·s cmuls 28147   /su cdivs 28228  2sc2s 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-divs 28229  df-n0s 28335  df-nns 28336  df-2s 28410
This theorem is referenced by:  cutpw2  28432
  Copyright terms: Public domain W3C validator