MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneldm Structured version   Visualization version   GIF version

Theorem psgneldm 18383
Description: Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgneldm.g 𝐺 = (SymGrp‘𝐷)
psgneldm.n 𝑁 = (pmSgn‘𝐷)
psgneldm.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
psgneldm (𝑃 ∈ dom 𝑁 ↔ (𝑃𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin))

Proof of Theorem psgneldm
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 difeq1 3978 . . . 4 (𝑝 = 𝑃 → (𝑝 ∖ I ) = (𝑃 ∖ I ))
21dmeqd 5617 . . 3 (𝑝 = 𝑃 → dom (𝑝 ∖ I ) = dom (𝑃 ∖ I ))
32eleq1d 2844 . 2 (𝑝 = 𝑃 → (dom (𝑝 ∖ I ) ∈ Fin ↔ dom (𝑃 ∖ I ) ∈ Fin))
4 psgneldm.g . . . 4 𝐺 = (SymGrp‘𝐷)
5 psgneldm.b . . . 4 𝐵 = (Base‘𝐺)
6 eqid 2772 . . . 4 {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
7 psgneldm.n . . . 4 𝑁 = (pmSgn‘𝐷)
84, 5, 6, 7psgnfn 18381 . . 3 𝑁 Fn {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
9 fndm 6282 . . 3 (𝑁 Fn {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
108, 9ax-mp 5 . 2 dom 𝑁 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
113, 10elrab2 3593 1 (𝑃 ∈ dom 𝑁 ↔ (𝑃𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2048  {crab 3086  cdif 3822   I cid 5304  dom cdm 5400   Fn wfn 6177  cfv 6182  Fincfn 8298  Basecbs 16329  SymGrpcsymg 18256  pmSgncpsgn 18368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-hash 13499  df-word 13663  df-slot 16333  df-base 16335  df-psgn 18370
This theorem is referenced by:  psgneu  18386  psgnvalfi  18394  psgnran  18395  gsmtrcl  18396  psgnfieu  18398  psgnprfval  18401
  Copyright terms: Public domain W3C validator