MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p0e1 Structured version   Visualization version   GIF version

Theorem 1p0e1 12244
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p0e1 (1 + 0) = 1

Proof of Theorem 1p0e1
StepHypRef Expression
1 ax-1cn 11064 . 2 1 ∈ ℂ
21addridi 11300 1 (1 + 0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151
This theorem is referenced by:  xov1plusxeqvd  13398  bernneq  14136  bcpasc  14228  relexpaddg  14960  4sqlem19  16875  1259lem1  17042  2503lem2  17049  pzriprng1ALT  21433  ef2pi  26413  dvsqrt  26678  dvcnsqrt  26680  loglesqrt  26698  efrlim  26906  efrlimOLD  26907  basellem7  27024  1sgm2ppw  27138  addsqnreup  27381  chpchtlim  27417  axlowdimlem16  28935  vc0  30554  ballotlemic  34520  hgt750lemd  34661  divcnvlin  35777  faclim  35790  poimirlem16  37675  poimirlem31  37690  12gcd5e1  42095  3exp7  42145  sticksstones7  42244  sticksstones12a  42249  sticksstones12  42250  3cubeslem1  42776  pell1qr1  42963  pell1qrgaplem  42965  rmxy0  43015  binomcxplemnotnn0  44448  clim1fr1  45700  dvxpaek  46037  itgiccshift  46077  itgperiod  46078  wallispi2lem2  46169
  Copyright terms: Public domain W3C validator