![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version |
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p0e1 | ⊢ (1 + 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11211 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addridi 11446 | 1 ⊢ (1 + 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: xov1plusxeqvd 13535 bernneq 14265 bcpasc 14357 relexpaddg 15089 4sqlem19 16997 1259lem1 17165 2503lem2 17172 pzriprng1ALT 21525 ef2pi 26534 dvsqrt 26799 dvcnsqrt 26801 loglesqrt 26819 efrlim 27027 efrlimOLD 27028 basellem7 27145 1sgm2ppw 27259 addsqnreup 27502 chpchtlim 27538 axlowdimlem16 28987 vc0 30603 ballotlemic 34488 hgt750lemd 34642 divcnvlin 35713 faclim 35726 poimirlem16 37623 poimirlem31 37638 12gcd5e1 41985 3exp7 42035 sticksstones7 42134 sticksstones12a 42139 sticksstones12 42140 metakunt29 42215 3cubeslem1 42672 pell1qr1 42859 pell1qrgaplem 42861 rmxy0 42912 binomcxplemnotnn0 44352 clim1fr1 45557 dvxpaek 45896 itgiccshift 45936 itgperiod 45937 wallispi2lem2 46028 |
Copyright terms: Public domain | W3C validator |