| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version | ||
| Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p0e1 | ⊢ (1 + 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addridi 11361 | 1 ⊢ (1 + 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: xov1plusxeqvd 13459 bernneq 14194 bcpasc 14286 relexpaddg 15019 4sqlem19 16934 1259lem1 17101 2503lem2 17108 pzriprng1ALT 21406 ef2pi 26386 dvsqrt 26651 dvcnsqrt 26653 loglesqrt 26671 efrlim 26879 efrlimOLD 26880 basellem7 26997 1sgm2ppw 27111 addsqnreup 27354 chpchtlim 27390 axlowdimlem16 28884 vc0 30503 ballotlemic 34498 hgt750lemd 34639 divcnvlin 35720 faclim 35733 poimirlem16 37630 poimirlem31 37645 12gcd5e1 41991 3exp7 42041 sticksstones7 42140 sticksstones12a 42145 sticksstones12 42146 3cubeslem1 42672 pell1qr1 42859 pell1qrgaplem 42861 rmxy0 42912 binomcxplemnotnn0 44345 clim1fr1 45599 dvxpaek 45938 itgiccshift 45978 itgperiod 45979 wallispi2lem2 46070 |
| Copyright terms: Public domain | W3C validator |