| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version | ||
| Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p0e1 | ⊢ (1 + 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11104 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addridi 11339 | 1 ⊢ (1 + 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 0cc0 11046 1c1 11047 + caddc 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-ltxr 11191 |
| This theorem is referenced by: xov1plusxeqvd 13437 bernneq 14172 bcpasc 14264 relexpaddg 14996 4sqlem19 16911 1259lem1 17078 2503lem2 17085 pzriprng1ALT 21439 ef2pi 26420 dvsqrt 26685 dvcnsqrt 26687 loglesqrt 26705 efrlim 26913 efrlimOLD 26914 basellem7 27031 1sgm2ppw 27145 addsqnreup 27388 chpchtlim 27424 axlowdimlem16 28938 vc0 30554 ballotlemic 34492 hgt750lemd 34633 divcnvlin 35714 faclim 35727 poimirlem16 37624 poimirlem31 37639 12gcd5e1 41985 3exp7 42035 sticksstones7 42134 sticksstones12a 42139 sticksstones12 42140 3cubeslem1 42666 pell1qr1 42853 pell1qrgaplem 42855 rmxy0 42906 binomcxplemnotnn0 44339 clim1fr1 45593 dvxpaek 45932 itgiccshift 45972 itgperiod 45973 wallispi2lem2 46064 |
| Copyright terms: Public domain | W3C validator |