| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version | ||
| Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 1p0e1 | ⊢ (1 + 0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11192 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | addridi 11427 | 1 ⊢ (1 + 0) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 |
| This theorem is referenced by: xov1plusxeqvd 13520 bernneq 14252 bcpasc 14344 relexpaddg 15077 4sqlem19 16988 1259lem1 17155 2503lem2 17162 pzriprng1ALT 21462 ef2pi 26443 dvsqrt 26708 dvcnsqrt 26710 loglesqrt 26728 efrlim 26936 efrlimOLD 26937 basellem7 27054 1sgm2ppw 27168 addsqnreup 27411 chpchtlim 27447 axlowdimlem16 28941 vc0 30560 ballotlemic 34544 hgt750lemd 34685 divcnvlin 35755 faclim 35768 poimirlem16 37665 poimirlem31 37680 12gcd5e1 42021 3exp7 42071 sticksstones7 42170 sticksstones12a 42175 sticksstones12 42176 3cubeslem1 42674 pell1qr1 42861 pell1qrgaplem 42863 rmxy0 42914 binomcxplemnotnn0 44347 clim1fr1 45597 dvxpaek 45936 itgiccshift 45976 itgperiod 45977 wallispi2lem2 46068 |
| Copyright terms: Public domain | W3C validator |