Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version |
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p0e1 | ⊢ (1 + 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10975 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addid1i 11208 | 1 ⊢ (1 + 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 0cc0 10917 1c1 10918 + caddc 10920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-ltxr 11060 |
This theorem is referenced by: xov1plusxeqvd 13276 bernneq 13990 bcpasc 14081 relexpaddg 14809 4sqlem19 16709 1259lem1 16877 2503lem2 16884 ef2pi 25679 dvsqrt 25940 dvcnsqrt 25942 loglesqrt 25956 efrlim 26164 basellem7 26281 1sgm2ppw 26393 addsqnreup 26636 chpchtlim 26672 axlowdimlem16 27370 vc0 28981 ballotlemic 32518 hgt750lemd 32673 divcnvlin 33743 faclim 33757 poimirlem16 35837 poimirlem31 35852 12gcd5e1 40053 3exp7 40103 sticksstones7 40150 sticksstones12a 40155 sticksstones12 40156 metakunt29 40195 3cubeslem1 40543 pell1qr1 40730 pell1qrgaplem 40732 rmxy0 40783 binomcxplemnotnn0 42012 clim1fr1 43191 dvxpaek 43530 itgiccshift 43570 itgperiod 43571 wallispi2lem2 43662 |
Copyright terms: Public domain | W3C validator |