![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1p0e1 | Structured version Visualization version GIF version |
Description: 1 + 0 = 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
1p0e1 | ⊢ (1 + 0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | addridi 11477 | 1 ⊢ (1 + 0) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: xov1plusxeqvd 13558 bernneq 14278 bcpasc 14370 relexpaddg 15102 4sqlem19 17010 1259lem1 17178 2503lem2 17185 pzriprng1ALT 21530 ef2pi 26537 dvsqrt 26802 dvcnsqrt 26804 loglesqrt 26822 efrlim 27030 efrlimOLD 27031 basellem7 27148 1sgm2ppw 27262 addsqnreup 27505 chpchtlim 27541 axlowdimlem16 28990 vc0 30606 ballotlemic 34471 hgt750lemd 34625 divcnvlin 35695 faclim 35708 poimirlem16 37596 poimirlem31 37611 12gcd5e1 41960 3exp7 42010 sticksstones7 42109 sticksstones12a 42114 sticksstones12 42115 metakunt29 42190 3cubeslem1 42640 pell1qr1 42827 pell1qrgaplem 42829 rmxy0 42880 binomcxplemnotnn0 44325 clim1fr1 45522 dvxpaek 45861 itgiccshift 45901 itgperiod 45902 wallispi2lem2 45993 |
Copyright terms: Public domain | W3C validator |