Step | Hyp | Ref
| Expression |
1 | | fveq2 6659 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑆‘𝑥) = (𝑆‘0)) |
2 | | derang.d |
. . . . . . 7
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
3 | | subfac.n |
. . . . . . 7
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
4 | 2, 3 | subfac0 32656 |
. . . . . 6
⊢ (𝑆‘0) = 1 |
5 | 1, 4 | eqtrdi 2810 |
. . . . 5
⊢ (𝑥 = 0 → (𝑆‘𝑥) = 1) |
6 | | fveq2 6659 |
. . . . . . 7
⊢ (𝑥 = 0 → (!‘𝑥) =
(!‘0)) |
7 | | fac0 13687 |
. . . . . . 7
⊢
(!‘0) = 1 |
8 | 6, 7 | eqtrdi 2810 |
. . . . . 6
⊢ (𝑥 = 0 → (!‘𝑥) = 1) |
9 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 0 → (0...𝑥) = (0...0)) |
10 | 9 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘))) |
11 | 8, 10 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = 0 → ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) = (1 · Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘)))) |
12 | 5, 11 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 0 → ((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ↔ 1 = (1 · Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘))))) |
13 | | fv0p1e1 11798 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑆‘(𝑥 + 1)) = (𝑆‘1)) |
14 | 2, 3 | subfac1 32657 |
. . . . . 6
⊢ (𝑆‘1) = 0 |
15 | 13, 14 | eqtrdi 2810 |
. . . . 5
⊢ (𝑥 = 0 → (𝑆‘(𝑥 + 1)) = 0) |
16 | | fv0p1e1 11798 |
. . . . . . 7
⊢ (𝑥 = 0 → (!‘(𝑥 + 1)) =
(!‘1)) |
17 | | fac1 13688 |
. . . . . . 7
⊢
(!‘1) = 1 |
18 | 16, 17 | eqtrdi 2810 |
. . . . . 6
⊢ (𝑥 = 0 → (!‘(𝑥 + 1)) = 1) |
19 | | oveq1 7158 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑥 + 1) = (0 + 1)) |
20 | | 0p1e1 11797 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
21 | 19, 20 | eqtrdi 2810 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 + 1) = 1) |
22 | 21 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑥 = 0 → (0...(𝑥 + 1)) =
(0...1)) |
23 | 22 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = 0 → Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...1)((-1↑𝑘) / (!‘𝑘))) |
24 | 18, 23 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = 0 → ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) = (1 · Σ𝑘 ∈ (0...1)((-1↑𝑘) / (!‘𝑘)))) |
25 | 15, 24 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 0 → ((𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ 0 = (1 · Σ𝑘 ∈ (0...1)((-1↑𝑘) / (!‘𝑘))))) |
26 | 12, 25 | anbi12d 634 |
. . 3
⊢ (𝑥 = 0 → (((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)))) ↔ (1 = (1 · Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘))) ∧ 0 = (1 · Σ𝑘 ∈ (0...1)((-1↑𝑘) / (!‘𝑘)))))) |
27 | | fveq2 6659 |
. . . . 5
⊢ (𝑥 = 𝑚 → (𝑆‘𝑥) = (𝑆‘𝑚)) |
28 | | fveq2 6659 |
. . . . . 6
⊢ (𝑥 = 𝑚 → (!‘𝑥) = (!‘𝑚)) |
29 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (0...𝑥) = (0...𝑚)) |
30 | 29 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = 𝑚 → Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) |
31 | 28, 30 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = 𝑚 → ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) |
32 | 27, 31 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑚 → ((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ↔ (𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
33 | | fvoveq1 7174 |
. . . . 5
⊢ (𝑥 = 𝑚 → (𝑆‘(𝑥 + 1)) = (𝑆‘(𝑚 + 1))) |
34 | | fvoveq1 7174 |
. . . . . 6
⊢ (𝑥 = 𝑚 → (!‘(𝑥 + 1)) = (!‘(𝑚 + 1))) |
35 | | oveq1 7158 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → (𝑥 + 1) = (𝑚 + 1)) |
36 | 35 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (0...(𝑥 + 1)) = (0...(𝑚 + 1))) |
37 | 36 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = 𝑚 → Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) |
38 | 34, 37 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = 𝑚 → ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) |
39 | 33, 38 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑚 → ((𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))))) |
40 | 32, 39 | anbi12d 634 |
. . 3
⊢ (𝑥 = 𝑚 → (((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)))) ↔ ((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))))) |
41 | | fveq2 6659 |
. . . . 5
⊢ (𝑥 = (𝑚 + 1) → (𝑆‘𝑥) = (𝑆‘(𝑚 + 1))) |
42 | | fveq2 6659 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → (!‘𝑥) = (!‘(𝑚 + 1))) |
43 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → (0...𝑥) = (0...(𝑚 + 1))) |
44 | 43 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) |
45 | 42, 44 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = (𝑚 + 1) → ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) |
46 | 41, 45 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = (𝑚 + 1) → ((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ↔ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))))) |
47 | | fvoveq1 7174 |
. . . . 5
⊢ (𝑥 = (𝑚 + 1) → (𝑆‘(𝑥 + 1)) = (𝑆‘((𝑚 + 1) + 1))) |
48 | | fvoveq1 7174 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → (!‘(𝑥 + 1)) = (!‘((𝑚 + 1) + 1))) |
49 | | oveq1 7158 |
. . . . . . . 8
⊢ (𝑥 = (𝑚 + 1) → (𝑥 + 1) = ((𝑚 + 1) + 1)) |
50 | 49 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑥 = (𝑚 + 1) → (0...(𝑥 + 1)) = (0...((𝑚 + 1) + 1))) |
51 | 50 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = (𝑚 + 1) → Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...((𝑚 + 1) + 1))((-1↑𝑘) / (!‘𝑘))) |
52 | 48, 51 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = (𝑚 + 1) → ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...((𝑚 + 1) + 1))((-1↑𝑘) / (!‘𝑘)))) |
53 | 47, 52 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = (𝑚 + 1) → ((𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ (𝑆‘((𝑚 + 1) + 1)) = ((!‘((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...((𝑚 + 1) + 1))((-1↑𝑘) / (!‘𝑘))))) |
54 | 46, 53 | anbi12d 634 |
. . 3
⊢ (𝑥 = (𝑚 + 1) → (((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)))) ↔ ((𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘((𝑚 + 1) + 1)) = ((!‘((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...((𝑚 + 1) + 1))((-1↑𝑘) / (!‘𝑘)))))) |
55 | | fveq2 6659 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑆‘𝑥) = (𝑆‘𝑁)) |
56 | | fveq2 6659 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁)) |
57 | | oveq2 7159 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁)) |
58 | 57 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = 𝑁 → Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))) |
59 | 56, 58 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))) |
60 | 55, 59 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ↔ (𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))) |
61 | | fvoveq1 7174 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑆‘(𝑥 + 1)) = (𝑆‘(𝑁 + 1))) |
62 | | fvoveq1 7174 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (!‘(𝑥 + 1)) = (!‘(𝑁 + 1))) |
63 | | oveq1 7158 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1)) |
64 | 63 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (0...(𝑥 + 1)) = (0...(𝑁 + 1))) |
65 | 64 | sumeq1d 15107 |
. . . . . 6
⊢ (𝑥 = 𝑁 → Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) |
66 | 62, 65 | oveq12d 7169 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘(𝑁 + 1)) · Σ𝑘 ∈ (0...(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) |
67 | 61, 66 | eqeq12d 2775 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ (𝑆‘(𝑁 + 1)) = ((!‘(𝑁 + 1)) · Σ𝑘 ∈ (0...(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))) |
68 | 60, 67 | anbi12d 634 |
. . 3
⊢ (𝑥 = 𝑁 → (((𝑆‘𝑥) = ((!‘𝑥) · Σ𝑘 ∈ (0...𝑥)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑥 + 1)) = ((!‘(𝑥 + 1)) · Σ𝑘 ∈ (0...(𝑥 + 1))((-1↑𝑘) / (!‘𝑘)))) ↔ ((𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑁 + 1)) = ((!‘(𝑁 + 1)) · Σ𝑘 ∈ (0...(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))) |
69 | | 0z 12032 |
. . . . . . 7
⊢ 0 ∈
ℤ |
70 | | ax-1cn 10634 |
. . . . . . 7
⊢ 1 ∈
ℂ |
71 | | oveq2 7159 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (-1↑𝑘) =
(-1↑0)) |
72 | | neg1cn 11789 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℂ |
73 | | exp0 13484 |
. . . . . . . . . . . 12
⊢ (-1
∈ ℂ → (-1↑0) = 1) |
74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(-1↑0) = 1 |
75 | 71, 74 | eqtrdi 2810 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (-1↑𝑘) = 1) |
76 | | fveq2 6659 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (!‘𝑘) =
(!‘0)) |
77 | 76, 7 | eqtrdi 2810 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (!‘𝑘) = 1) |
78 | 75, 77 | oveq12d 7169 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((-1↑𝑘) / (!‘𝑘)) = (1 / 1)) |
79 | 70 | div1i 11407 |
. . . . . . . . 9
⊢ (1 / 1) =
1 |
80 | 78, 79 | eqtrdi 2810 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((-1↑𝑘) / (!‘𝑘)) = 1) |
81 | 80 | fsum1 15151 |
. . . . . . 7
⊢ ((0
∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘)) = 1) |
82 | 69, 70, 81 | mp2an 692 |
. . . . . 6
⊢
Σ𝑘 ∈
(0...0)((-1↑𝑘) /
(!‘𝑘)) =
1 |
83 | 82 | oveq2i 7162 |
. . . . 5
⊢ (1
· Σ𝑘 ∈
(0...0)((-1↑𝑘) /
(!‘𝑘))) = (1 ·
1) |
84 | | 1t1e1 11837 |
. . . . 5
⊢ (1
· 1) = 1 |
85 | 83, 84 | eqtr2i 2783 |
. . . 4
⊢ 1 = (1
· Σ𝑘 ∈
(0...0)((-1↑𝑘) /
(!‘𝑘))) |
86 | | nn0uz 12321 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
87 | | 1e0p1 12180 |
. . . . . . . . 9
⊢ 1 = (0 +
1) |
88 | | oveq2 7159 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → (-1↑𝑘) =
(-1↑1)) |
89 | | exp1 13486 |
. . . . . . . . . . . . 13
⊢ (-1
∈ ℂ → (-1↑1) = -1) |
90 | 72, 89 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(-1↑1) = -1 |
91 | 88, 90 | eqtrdi 2810 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → (-1↑𝑘) = -1) |
92 | | fveq2 6659 |
. . . . . . . . . . . 12
⊢ (𝑘 = 1 → (!‘𝑘) =
(!‘1)) |
93 | 92, 17 | eqtrdi 2810 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → (!‘𝑘) = 1) |
94 | 91, 93 | oveq12d 7169 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → ((-1↑𝑘) / (!‘𝑘)) = (-1 / 1)) |
95 | 72 | div1i 11407 |
. . . . . . . . . 10
⊢ (-1 / 1)
= -1 |
96 | 94, 95 | eqtrdi 2810 |
. . . . . . . . 9
⊢ (𝑘 = 1 → ((-1↑𝑘) / (!‘𝑘)) = -1) |
97 | | neg1rr 11790 |
. . . . . . . . . . . . 13
⊢ -1 ∈
ℝ |
98 | | reexpcl 13497 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℝ ∧ 𝑘
∈ ℕ0) → (-1↑𝑘) ∈ ℝ) |
99 | 97, 98 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (-1↑𝑘) ∈
ℝ) |
100 | | faccl 13694 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
101 | 99, 100 | nndivred 11729 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((-1↑𝑘) /
(!‘𝑘)) ∈
ℝ) |
102 | 101 | recnd 10708 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((-1↑𝑘) /
(!‘𝑘)) ∈
ℂ) |
103 | 102 | adantl 486 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ) |
104 | | 0nn0 11950 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
105 | 104, 82 | pm3.2i 475 |
. . . . . . . . . 10
⊢ (0 ∈
ℕ0 ∧ Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘)) = 1) |
106 | 105 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)((-1↑𝑘) / (!‘𝑘)) = 1)) |
107 | | 1pneg1e0 11794 |
. . . . . . . . . 10
⊢ (1 + -1)
= 0 |
108 | 107 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ (1 + -1) = 0) |
109 | 86, 87, 96, 103, 106, 108 | fsump1i 15173 |
. . . . . . . 8
⊢ (⊤
→ (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)((-1↑𝑘) / (!‘𝑘)) = 0)) |
110 | 109 | mptru 1546 |
. . . . . . 7
⊢ (1 ∈
ℕ0 ∧ Σ𝑘 ∈ (0...1)((-1↑𝑘) / (!‘𝑘)) = 0) |
111 | 110 | simpri 490 |
. . . . . 6
⊢
Σ𝑘 ∈
(0...1)((-1↑𝑘) /
(!‘𝑘)) =
0 |
112 | 111 | oveq2i 7162 |
. . . . 5
⊢ (1
· Σ𝑘 ∈
(0...1)((-1↑𝑘) /
(!‘𝑘))) = (1 ·
0) |
113 | 70 | mul01i 10869 |
. . . . 5
⊢ (1
· 0) = 0 |
114 | 112, 113 | eqtr2i 2783 |
. . . 4
⊢ 0 = (1
· Σ𝑘 ∈
(0...1)((-1↑𝑘) /
(!‘𝑘))) |
115 | 85, 114 | pm3.2i 475 |
. . 3
⊢ (1 = (1
· Σ𝑘 ∈
(0...0)((-1↑𝑘) /
(!‘𝑘))) ∧ 0 = (1
· Σ𝑘 ∈
(0...1)((-1↑𝑘) /
(!‘𝑘)))) |
116 | | simpr 489 |
. . . . 5
⊢ (((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) → (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) |
117 | 116 | a1i 11 |
. . . 4
⊢ (𝑚 ∈ ℕ0
→ (((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) → (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))))) |
118 | | oveq12 7160 |
. . . . . . 7
⊢ (((𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) → ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚)) = (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
119 | 118 | ancoms 463 |
. . . . . 6
⊢ (((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) → ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚)) = (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
120 | 119 | oveq2d 7167 |
. . . . 5
⊢ (((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) → ((𝑚 + 1) · ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚))) = ((𝑚 + 1) · (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))))) |
121 | | nn0p1nn 11974 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
122 | 2, 3 | subfacp1 32665 |
. . . . . . . 8
⊢ ((𝑚 + 1) ∈ ℕ →
(𝑆‘((𝑚 + 1) + 1)) = ((𝑚 + 1) · ((𝑆‘(𝑚 + 1)) + (𝑆‘((𝑚 + 1) − 1))))) |
123 | 121, 122 | syl 17 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝑆‘((𝑚 + 1) + 1)) = ((𝑚 + 1) · ((𝑆‘(𝑚 + 1)) + (𝑆‘((𝑚 + 1) − 1))))) |
124 | | nn0cn 11945 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
125 | | pncan 10931 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
126 | 124, 70, 125 | sylancl 590 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) − 1)
= 𝑚) |
127 | 126 | fveq2d 6663 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (𝑆‘((𝑚 + 1) − 1)) = (𝑆‘𝑚)) |
128 | 127 | oveq2d 7167 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ ((𝑆‘(𝑚 + 1)) + (𝑆‘((𝑚 + 1) − 1))) = ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚))) |
129 | 128 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) ·
((𝑆‘(𝑚 + 1)) + (𝑆‘((𝑚 + 1) − 1)))) = ((𝑚 + 1) · ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚)))) |
130 | 123, 129 | eqtrd 2794 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ (𝑆‘((𝑚 + 1) + 1)) = ((𝑚 + 1) · ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚)))) |
131 | | peano2nn0 11975 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
132 | | peano2nn0 11975 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℕ0) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℕ0) |
134 | | faccl 13694 |
. . . . . . . . . . 11
⊢ (((𝑚 + 1) + 1) ∈
ℕ0 → (!‘((𝑚 + 1) + 1)) ∈ ℕ) |
135 | 133, 134 | syl 17 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (!‘((𝑚 + 1) +
1)) ∈ ℕ) |
136 | 135 | nncnd 11691 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (!‘((𝑚 + 1) +
1)) ∈ ℂ) |
137 | | fzfid 13391 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (0...(𝑚 + 1)) ∈
Fin) |
138 | | elfznn0 13050 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(𝑚 + 1)) → 𝑘 ∈ ℕ0) |
139 | 138 | adantl 486 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ (0...(𝑚 + 1))) → 𝑘 ∈
ℕ0) |
140 | 139, 102 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ (0...(𝑚 + 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ) |
141 | 137, 140 | fsumcl 15139 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘)) ∈
ℂ) |
142 | | expcl 13498 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ ((𝑚 +
1) + 1) ∈ ℕ0) → (-1↑((𝑚 + 1) + 1)) ∈ ℂ) |
143 | 72, 133, 142 | sylancr 591 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (-1↑((𝑚 + 1) +
1)) ∈ ℂ) |
144 | 135 | nnne0d 11725 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (!‘((𝑚 + 1) +
1)) ≠ 0) |
145 | 143, 136,
144 | divcld 11455 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((-1↑((𝑚 + 1) +
1)) / (!‘((𝑚 + 1) +
1))) ∈ ℂ) |
146 | 136, 141,
145 | adddid 10704 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · (Σ𝑘
∈ (0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘)) +
((-1↑((𝑚 + 1) + 1)) /
(!‘((𝑚 + 1) + 1)))))
= (((!‘((𝑚 + 1) + 1))
· Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) +
((!‘((𝑚 + 1) + 1))
· ((-1↑((𝑚 + 1)
+ 1)) / (!‘((𝑚 + 1) +
1)))))) |
147 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℕ0) |
148 | 147, 86 | eleqtrdi 2863 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
(ℤ≥‘0)) |
149 | | oveq2 7159 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → (-1↑𝑘) = (-1↑(𝑚 + 1))) |
150 | | fveq2 6659 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → (!‘𝑘) = (!‘(𝑚 + 1))) |
151 | 149, 150 | oveq12d 7169 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → ((-1↑𝑘) / (!‘𝑘)) = ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1)))) |
152 | 148, 140,
151 | fsump1 15160 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘)) =
(Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)) + ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1))))) |
153 | 152 | oveq2d 7167 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · Σ𝑘
∈ (0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) =
((!‘((𝑚 + 1) + 1))
· (Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘)) + ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1)))))) |
154 | | fzfid 13391 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (0...𝑚) ∈
Fin) |
155 | | elfznn0 13050 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0) |
156 | 155 | adantl 486 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑚)) → 𝑘 ∈ ℕ0) |
157 | 156, 102 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑚)) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ) |
158 | 154, 157 | fsumcl 15139 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘)) ∈ ℂ) |
159 | | expcl 13498 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℂ ∧ (𝑚 +
1) ∈ ℕ0) → (-1↑(𝑚 + 1)) ∈ ℂ) |
160 | 72, 131, 159 | sylancr 591 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (-1↑(𝑚 + 1))
∈ ℂ) |
161 | | faccl 13694 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 + 1) ∈ ℕ0
→ (!‘(𝑚 + 1))
∈ ℕ) |
162 | 131, 161 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (!‘(𝑚 + 1))
∈ ℕ) |
163 | 162 | nncnd 11691 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (!‘(𝑚 + 1))
∈ ℂ) |
164 | 162 | nnne0d 11725 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (!‘(𝑚 + 1))
≠ 0) |
165 | 160, 163,
164 | divcld 11455 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((-1↑(𝑚 + 1)) /
(!‘(𝑚 + 1))) ∈
ℂ) |
166 | 136, 158,
165 | adddid 10704 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · (Σ𝑘
∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)) + ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1))))) = (((!‘((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘((𝑚 + 1) + 1)) · ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1)))))) |
167 | | facp1 13689 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 + 1) ∈ ℕ0
→ (!‘((𝑚 + 1) +
1)) = ((!‘(𝑚 + 1))
· ((𝑚 + 1) +
1))) |
168 | 131, 167 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (!‘((𝑚 + 1) +
1)) = ((!‘(𝑚 + 1))
· ((𝑚 + 1) +
1))) |
169 | | facp1 13689 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ (!‘(𝑚 + 1)) =
((!‘𝑚) ·
(𝑚 + 1))) |
170 | | faccl 13694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (!‘𝑚) ∈
ℕ) |
171 | 170 | nncnd 11691 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (!‘𝑚) ∈
ℂ) |
172 | 121 | nncnd 11691 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℂ) |
173 | 171, 172 | mulcomd 10701 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· (𝑚 + 1)) = ((𝑚 + 1) · (!‘𝑚))) |
174 | 169, 173 | eqtrd 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (!‘(𝑚 + 1)) =
((𝑚 + 1) ·
(!‘𝑚))) |
175 | 174 | oveq1d 7166 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ ((!‘(𝑚 + 1))
· ((𝑚 + 1) + 1)) =
(((𝑚 + 1) ·
(!‘𝑚)) ·
((𝑚 + 1) +
1))) |
176 | 133 | nn0cnd 11997 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℂ) |
177 | 172, 171,
176 | mulassd 10703 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 + 1) ·
(!‘𝑚)) ·
((𝑚 + 1) + 1)) = ((𝑚 + 1) · ((!‘𝑚) · ((𝑚 + 1) + 1)))) |
178 | 168, 175,
177 | 3eqtrd 2798 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (!‘((𝑚 + 1) +
1)) = ((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) +
1)))) |
179 | 178 | oveq1d 7166 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · Σ𝑘
∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) = (((𝑚 + 1) · ((!‘𝑚) · ((𝑚 + 1) + 1))) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) |
180 | 136, 160,
163, 164 | div12d 11491 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · ((-1↑(𝑚 +
1)) / (!‘(𝑚 + 1)))) =
((-1↑(𝑚 + 1)) ·
((!‘((𝑚 + 1) + 1)) /
(!‘(𝑚 +
1))))) |
181 | 168 | oveq1d 7166 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) / (!‘(𝑚 + 1))) =
(((!‘(𝑚 + 1))
· ((𝑚 + 1) + 1)) /
(!‘(𝑚 +
1)))) |
182 | 176, 163,
164 | divcan3d 11460 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (((!‘(𝑚 + 1))
· ((𝑚 + 1) + 1)) /
(!‘(𝑚 + 1))) =
((𝑚 + 1) +
1)) |
183 | 181, 182 | eqtrd 2794 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) / (!‘(𝑚 + 1))) =
((𝑚 + 1) +
1)) |
184 | 183 | oveq2d 7167 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ ((-1↑(𝑚 + 1))
· ((!‘((𝑚 + 1)
+ 1)) / (!‘(𝑚 + 1))))
= ((-1↑(𝑚 + 1))
· ((𝑚 + 1) +
1))) |
185 | 180, 184 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · ((-1↑(𝑚 +
1)) / (!‘(𝑚 + 1)))) =
((-1↑(𝑚 + 1)) ·
((𝑚 + 1) +
1))) |
186 | 179, 185 | oveq12d 7169 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (((!‘((𝑚 + 1)
+ 1)) · Σ𝑘
∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘((𝑚 + 1) + 1)) · ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1))))) = ((((𝑚 + 1) · ((!‘𝑚) · ((𝑚 + 1) + 1))) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1)))) |
187 | 153, 166,
186 | 3eqtrd 2798 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · Σ𝑘
∈ (0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) = ((((𝑚 + 1) · ((!‘𝑚) · ((𝑚 + 1) + 1))) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1)))) |
188 | 143, 136,
144 | divcan2d 11457 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · ((-1↑((𝑚
+ 1) + 1)) / (!‘((𝑚 +
1) + 1)))) = (-1↑((𝑚 +
1) + 1))) |
189 | 187, 188 | oveq12d 7169 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (((!‘((𝑚 + 1)
+ 1)) · Σ𝑘
∈ (0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) +
((!‘((𝑚 + 1) + 1))
· ((-1↑((𝑚 + 1)
+ 1)) / (!‘((𝑚 + 1) +
1))))) = (((((𝑚 + 1)
· ((!‘𝑚)
· ((𝑚 + 1) + 1)))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1))) + (-1↑((𝑚 + 1) + 1)))) |
190 | 171, 176 | mulcld 10700 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· ((𝑚 + 1) + 1))
∈ ℂ) |
191 | 172, 190,
158 | mulassd 10703 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) + 1))) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) = ((𝑚 + 1) · (((!‘𝑚) · ((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
192 | 72 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ -1 ∈ ℂ) |
193 | 160, 176,
192 | adddid 10704 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ ((-1↑(𝑚 + 1))
· (((𝑚 + 1) + 1) +
-1)) = (((-1↑(𝑚 + 1))
· ((𝑚 + 1) + 1)) +
((-1↑(𝑚 + 1)) ·
-1))) |
194 | | negsub 10973 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 + 1) + 1) ∈ ℂ ∧
1 ∈ ℂ) → (((𝑚 + 1) + 1) + -1) = (((𝑚 + 1) + 1) − 1)) |
195 | 176, 70, 194 | sylancl 590 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 + 1) + 1) + -1)
= (((𝑚 + 1) + 1) −
1)) |
196 | | pncan 10931 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 + 1) ∈ ℂ ∧ 1
∈ ℂ) → (((𝑚
+ 1) + 1) − 1) = (𝑚 +
1)) |
197 | 172, 70, 196 | sylancl 590 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 + 1) + 1)
− 1) = (𝑚 +
1)) |
198 | 195, 197 | eqtrd 2794 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 + 1) + 1) + -1)
= (𝑚 + 1)) |
199 | 198 | oveq2d 7167 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ ((-1↑(𝑚 + 1))
· (((𝑚 + 1) + 1) +
-1)) = ((-1↑(𝑚 + 1))
· (𝑚 +
1))) |
200 | 193, 199 | eqtr3d 2796 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ (((-1↑(𝑚 + 1))
· ((𝑚 + 1) + 1)) +
((-1↑(𝑚 + 1)) ·
-1)) = ((-1↑(𝑚 + 1))
· (𝑚 +
1))) |
201 | | expp1 13487 |
. . . . . . . . . . . . 13
⊢ ((-1
∈ ℂ ∧ (𝑚 +
1) ∈ ℕ0) → (-1↑((𝑚 + 1) + 1)) = ((-1↑(𝑚 + 1)) · -1)) |
202 | 72, 131, 201 | sylancr 591 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ (-1↑((𝑚 + 1) +
1)) = ((-1↑(𝑚 + 1))
· -1)) |
203 | 202 | oveq2d 7167 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ (((-1↑(𝑚 + 1))
· ((𝑚 + 1) + 1)) +
(-1↑((𝑚 + 1) + 1))) =
(((-1↑(𝑚 + 1))
· ((𝑚 + 1) + 1)) +
((-1↑(𝑚 + 1)) ·
-1))) |
204 | 172, 160 | mulcomd 10701 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) ·
(-1↑(𝑚 + 1))) =
((-1↑(𝑚 + 1)) ·
(𝑚 + 1))) |
205 | 200, 203,
204 | 3eqtr4d 2804 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (((-1↑(𝑚 + 1))
· ((𝑚 + 1) + 1)) +
(-1↑((𝑚 + 1) + 1))) =
((𝑚 + 1) ·
(-1↑(𝑚 +
1)))) |
206 | 191, 205 | oveq12d 7169 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) + 1))) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1)) + (-1↑((𝑚 + 1) + 1)))) = (((𝑚 + 1) · (((!‘𝑚) · ((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) + ((𝑚 + 1) · (-1↑(𝑚 + 1))))) |
207 | 172, 190 | mulcld 10700 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) + 1))) ∈
ℂ) |
208 | 207, 158 | mulcld 10700 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) + 1))) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∈ ℂ) |
209 | 160, 176 | mulcld 10700 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((-1↑(𝑚 + 1))
· ((𝑚 + 1) + 1))
∈ ℂ) |
210 | 208, 209,
143 | addassd 10702 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (((((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) + 1))) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1))) + (-1↑((𝑚 + 1) + 1))) = ((((𝑚 + 1) · ((!‘𝑚) · ((𝑚 + 1) + 1))) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1)) + (-1↑((𝑚 + 1) + 1))))) |
211 | 190, 158 | mulcld 10700 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (((!‘𝑚)
· ((𝑚 + 1) + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∈ ℂ) |
212 | 172, 211,
160 | adddid 10704 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) ·
((((!‘𝑚) ·
((𝑚 + 1) + 1)) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1)))) = (((𝑚 + 1) · (((!‘𝑚) · ((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) + ((𝑚 + 1) · (-1↑(𝑚 + 1))))) |
213 | 206, 210,
212 | 3eqtr4d 2804 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (((((𝑚 + 1) ·
((!‘𝑚) ·
((𝑚 + 1) + 1))) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((-1↑(𝑚 + 1)) · ((𝑚 + 1) + 1))) + (-1↑((𝑚 + 1) + 1))) = ((𝑚 + 1) · ((((!‘𝑚) · ((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1))))) |
214 | 146, 189,
213 | 3eqtrd 2798 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · (Σ𝑘
∈ (0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘)) +
((-1↑((𝑚 + 1) + 1)) /
(!‘((𝑚 + 1) + 1)))))
= ((𝑚 + 1) ·
((((!‘𝑚) ·
((𝑚 + 1) + 1)) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1))))) |
215 | 131, 86 | eleqtrdi 2863 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
(ℤ≥‘0)) |
216 | | elfznn0 13050 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...((𝑚 + 1) + 1)) → 𝑘 ∈
ℕ0) |
217 | 216 | adantl 486 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ (0...((𝑚 + 1) + 1))) → 𝑘 ∈
ℕ0) |
218 | 217, 102 | syl 17 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝑘 ∈ (0...((𝑚 + 1) + 1))) →
((-1↑𝑘) /
(!‘𝑘)) ∈
ℂ) |
219 | | oveq2 7159 |
. . . . . . . . . 10
⊢ (𝑘 = ((𝑚 + 1) + 1) → (-1↑𝑘) = (-1↑((𝑚 + 1) + 1))) |
220 | | fveq2 6659 |
. . . . . . . . . 10
⊢ (𝑘 = ((𝑚 + 1) + 1) → (!‘𝑘) = (!‘((𝑚 + 1) + 1))) |
221 | 219, 220 | oveq12d 7169 |
. . . . . . . . 9
⊢ (𝑘 = ((𝑚 + 1) + 1) → ((-1↑𝑘) / (!‘𝑘)) = ((-1↑((𝑚 + 1) + 1)) / (!‘((𝑚 + 1) + 1)))) |
222 | 215, 218,
221 | fsump1 15160 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ Σ𝑘 ∈
(0...((𝑚 + 1) +
1))((-1↑𝑘) /
(!‘𝑘)) =
(Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘)) +
((-1↑((𝑚 + 1) + 1)) /
(!‘((𝑚 + 1) +
1))))) |
223 | 222 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · Σ𝑘
∈ (0...((𝑚 + 1) +
1))((-1↑𝑘) /
(!‘𝑘))) =
((!‘((𝑚 + 1) + 1))
· (Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘)) +
((-1↑((𝑚 + 1) + 1)) /
(!‘((𝑚 + 1) +
1)))))) |
224 | 163, 158 | mulcld 10700 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∈ ℂ) |
225 | 171, 158 | mulcld 10700 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∈ ℂ) |
226 | 224, 160,
225 | add32d 10906 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) = ((((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) + (-1↑(𝑚 + 1)))) |
227 | 152 | oveq2d 7167 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) =
((!‘(𝑚 + 1)) ·
(Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)) + ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1)))))) |
228 | 163, 158,
165 | adddid 10704 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ ((!‘(𝑚 + 1))
· (Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘)) + ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1))))) = (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘(𝑚 + 1)) · ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1)))))) |
229 | 160, 163,
164 | divcan2d 11457 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ ((!‘(𝑚 + 1))
· ((-1↑(𝑚 + 1))
/ (!‘(𝑚 + 1)))) =
(-1↑(𝑚 +
1))) |
230 | 229 | oveq2d 7167 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ (((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘(𝑚 + 1)) · ((-1↑(𝑚 + 1)) / (!‘(𝑚 + 1))))) = (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1)))) |
231 | 227, 228,
230 | 3eqtrd 2798 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ ((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) =
(((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1)))) |
232 | 231 | oveq1d 7166 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) +
((!‘𝑚) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) = ((((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
233 | 70 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ 1 ∈ ℂ) |
234 | 171, 172,
233 | adddid 10704 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· ((𝑚 + 1) + 1)) =
(((!‘𝑚) ·
(𝑚 + 1)) + ((!‘𝑚) · 1))) |
235 | 169 | eqcomd 2765 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· (𝑚 + 1)) =
(!‘(𝑚 +
1))) |
236 | 171 | mulid1d 10697 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· 1) = (!‘𝑚)) |
237 | 235, 236 | oveq12d 7169 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (((!‘𝑚)
· (𝑚 + 1)) +
((!‘𝑚) · 1)) =
((!‘(𝑚 + 1)) +
(!‘𝑚))) |
238 | 234, 237 | eqtrd 2794 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ ((!‘𝑚)
· ((𝑚 + 1) + 1)) =
((!‘(𝑚 + 1)) +
(!‘𝑚))) |
239 | 238 | oveq1d 7166 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ (((!‘𝑚)
· ((𝑚 + 1) + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) = (((!‘(𝑚 + 1)) + (!‘𝑚)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) |
240 | 163, 171,
158 | adddird 10705 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ (((!‘(𝑚 + 1))
+ (!‘𝑚)) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) = (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
241 | 239, 240 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (((!‘𝑚)
· ((𝑚 + 1) + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) = (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) |
242 | 241 | oveq1d 7166 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ ((((!‘𝑚)
· ((𝑚 + 1) + 1))
· Σ𝑘 ∈
(0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1))) = ((((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) + (-1↑(𝑚 + 1)))) |
243 | 226, 232,
242 | 3eqtr4d 2804 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) +
((!‘𝑚) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))) = ((((!‘𝑚) · ((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1)))) |
244 | 243 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) ·
(((!‘(𝑚 + 1))
· Σ𝑘 ∈
(0...(𝑚 +
1))((-1↑𝑘) /
(!‘𝑘))) +
((!‘𝑚) ·
Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))) = ((𝑚 + 1) · ((((!‘𝑚) · ((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) + (-1↑(𝑚 + 1))))) |
245 | 214, 223,
244 | 3eqtr4d 2804 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ ((!‘((𝑚 + 1) +
1)) · Σ𝑘
∈ (0...((𝑚 + 1) +
1))((-1↑𝑘) /
(!‘𝑘))) = ((𝑚 + 1) · (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘)))))) |
246 | 130, 245 | eqeq12d 2775 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ ((𝑆‘((𝑚 + 1) + 1)) = ((!‘((𝑚 + 1) + 1)) ·
Σ𝑘 ∈
(0...((𝑚 + 1) +
1))((-1↑𝑘) /
(!‘𝑘))) ↔
((𝑚 + 1) · ((𝑆‘(𝑚 + 1)) + (𝑆‘𝑚))) = ((𝑚 + 1) · (((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))))))) |
247 | 120, 246 | syl5ibr 249 |
. . . 4
⊢ (𝑚 ∈ ℕ0
→ (((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) → (𝑆‘((𝑚 + 1) + 1)) = ((!‘((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...((𝑚 + 1) + 1))((-1↑𝑘) / (!‘𝑘))))) |
248 | 117, 247 | jcad 517 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ (((𝑆‘𝑚) = ((!‘𝑚) · Σ𝑘 ∈ (0...𝑚)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘)))) → ((𝑆‘(𝑚 + 1)) = ((!‘(𝑚 + 1)) · Σ𝑘 ∈ (0...(𝑚 + 1))((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘((𝑚 + 1) + 1)) = ((!‘((𝑚 + 1) + 1)) · Σ𝑘 ∈ (0...((𝑚 + 1) + 1))((-1↑𝑘) / (!‘𝑘)))))) |
249 | 26, 40, 54, 68, 115, 248 | nn0ind 12117 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))) ∧ (𝑆‘(𝑁 + 1)) = ((!‘(𝑁 + 1)) · Σ𝑘 ∈ (0...(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))) |
250 | 249 | simpld 499 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))) |