![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gt0div | Structured version Visualization version GIF version |
Description: Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005.) |
Ref | Expression |
---|---|
gt0div | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11200 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | ltdiv1 12062 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 < 𝐴 ↔ (0 / 𝐵) < (𝐴 / 𝐵))) | |
3 | 1, 2 | mp3an1 1448 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 < 𝐴 ↔ (0 / 𝐵) < (𝐴 / 𝐵))) |
4 | 3 | 3impb 1115 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ (0 / 𝐵) < (𝐴 / 𝐵))) |
5 | recn 11184 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
6 | gt0ne0 11663 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0) | |
7 | div0 11886 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0) | |
8 | 5, 6, 7 | syl2an2r 683 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 / 𝐵) = 0) |
9 | 8 | breq1d 5152 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) < (𝐴 / 𝐵) ↔ 0 < (𝐴 / 𝐵))) |
10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) < (𝐴 / 𝐵) ↔ 0 < (𝐴 / 𝐵))) |
11 | 4, 10 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5142 (class class class)co 7394 ℂcc 11092 ℝcr 11093 0cc0 11094 < clt 11232 / cdiv 11855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-po 5582 df-so 5583 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-div 11856 |
This theorem is referenced by: divgt0 12066 halfpos2 12425 elpq 12943 gt0divd 13037 dvferm1lem 25432 dvferm2lem 25434 dvgt0 25452 logbgt0b 26227 nnoALTV 46199 |
Copyright terms: Public domain | W3C validator |