MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0div Structured version   Visualization version   GIF version

Theorem ge0div 11840
Description: Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ge0div ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))

Proof of Theorem ge0div
StepHypRef Expression
1 0re 10976 . . . 4 0 ∈ ℝ
2 lediv1 11838 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵)))
31, 2mp3an1 1447 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵)))
433impb 1114 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵)))
5 recn 10960 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
6 gt0ne0 11438 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
7 div0 11661 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0)
85, 6, 7syl2an2r 682 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 / 𝐵) = 0)
98breq1d 5089 . . 3 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) ≤ (𝐴 / 𝐵) ↔ 0 ≤ (𝐴 / 𝐵)))
1093adant1 1129 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) ≤ (𝐴 / 𝐵) ↔ 0 ≤ (𝐴 / 𝐵)))
114, 10bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  (class class class)co 7269  cc 10868  cr 10869  0cc0 10870   < clt 11008  cle 11009   / cdiv 11630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631
This theorem is referenced by:  divge0  11842  halfnneg2  12202  nn0ge0div  12387  ge0divd  12807  odzdvds  16492  pcfaclem  16595  pockthlem  16602  dvge0  25166  nn0oALTV  45115  nn0e  45116  rege1logbrege0  45871  logbge0b  45876  dignnld  45916
  Copyright terms: Public domain W3C validator