Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ge0div | Structured version Visualization version GIF version |
Description: Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.) |
Ref | Expression |
---|---|
ge0div | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11023 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | lediv1 11886 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵))) | |
3 | 1, 2 | mp3an1 1448 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵))) |
4 | 3 | 3impb 1115 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ (0 / 𝐵) ≤ (𝐴 / 𝐵))) |
5 | recn 11007 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
6 | gt0ne0 11486 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0) | |
7 | div0 11709 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0) | |
8 | 5, 6, 7 | syl2an2r 683 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 / 𝐵) = 0) |
9 | 8 | breq1d 5091 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) ≤ (𝐴 / 𝐵) ↔ 0 ≤ (𝐴 / 𝐵))) |
10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((0 / 𝐵) ≤ (𝐴 / 𝐵) ↔ 0 ≤ (𝐴 / 𝐵))) |
11 | 4, 10 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 (class class class)co 7307 ℂcc 10915 ℝcr 10916 0cc0 10917 < clt 11055 ≤ cle 11056 / cdiv 11678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 |
This theorem is referenced by: divge0 11890 halfnneg2 12250 nn0ge0div 12435 ge0divd 12856 odzdvds 16541 pcfaclem 16644 pockthlem 16651 dvge0 25215 nn0oALTV 45206 nn0e 45207 rege1logbrege0 45962 logbge0b 45967 dignnld 46007 |
Copyright terms: Public domain | W3C validator |