![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnoALTV | Structured version Visualization version GIF version |
Description: An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
Ref | Expression |
---|---|
nnoALTV | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddm1div2z 46288 | . . 3 ⊢ (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℤ) |
3 | eluz2b1 12899 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
4 | 1red 11211 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
5 | zre 12558 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 4, 5 | posdifd 11797 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 ↔ 0 < (𝑁 − 1))) |
7 | 6 | biimpa 477 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 0 < (𝑁 − 1)) |
8 | peano2zm 12601 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
9 | 8 | zred 12662 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℝ) |
10 | 2re 12282 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
12 | 2pos 12311 | . . . . . . . . 9 ⊢ 0 < 2 | |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 0 < 2) |
14 | 9, 11, 13 | 3jca 1128 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2)) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → ((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2)) |
16 | gt0div 12076 | . . . . . 6 ⊢ (((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) |
18 | 7, 17 | mpbid 231 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 0 < ((𝑁 − 1) / 2)) |
19 | 3, 18 | sylbi 216 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < ((𝑁 − 1) / 2)) |
20 | 19 | adantr 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → 0 < ((𝑁 − 1) / 2)) |
21 | elnnz 12564 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2))) | |
22 | 2, 20, 21 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 0cc0 11106 1c1 11107 < clt 11244 − cmin 11440 / cdiv 11867 ℕcn 12208 2c2 12263 ℤcz 12554 ℤ≥cuz 12818 Odd codd 46279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-odd 46281 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |