| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnoALTV | Structured version Visualization version GIF version | ||
| Description: An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| nnoALTV | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddm1div2z 47635 | . . 3 ⊢ (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℤ) |
| 3 | eluz2b1 12878 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
| 4 | 1red 11175 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℝ) | |
| 5 | zre 12533 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 6 | 4, 5 | posdifd 11765 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1 < 𝑁 ↔ 0 < (𝑁 − 1))) |
| 7 | 6 | biimpa 476 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 0 < (𝑁 − 1)) |
| 8 | peano2zm 12576 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 9 | 8 | zred 12638 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℝ) |
| 10 | 2re 12260 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 12 | 2pos 12289 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 0 < 2) |
| 14 | 9, 11, 13 | 3jca 1128 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2)) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → ((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2)) |
| 16 | gt0div 12049 | . . . . . 6 ⊢ (((𝑁 − 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (0 < (𝑁 − 1) ↔ 0 < ((𝑁 − 1) / 2))) |
| 18 | 7, 17 | mpbid 232 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 0 < ((𝑁 − 1) / 2)) |
| 19 | 3, 18 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < ((𝑁 − 1) / 2)) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → 0 < ((𝑁 − 1) / 2)) |
| 21 | elnnz 12539 | . 2 ⊢ (((𝑁 − 1) / 2) ∈ ℕ ↔ (((𝑁 − 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 − 1) / 2))) | |
| 22 | 2, 20, 21 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 ℤcz 12529 ℤ≥cuz 12793 Odd codd 47626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-odd 47628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |