![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmof | Structured version Visualization version GIF version |
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
nmofval.1 | β’ π = (π normOp π) |
Ref | Expression |
---|---|
nmof | β’ ((π β NrmGrp β§ π β NrmGrp) β π:(π GrpHom π)βΆβ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | . . 3 β’ π = (π normOp π) | |
2 | eqid 2730 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
3 | eqid 2730 | . . 3 β’ (normβπ) = (normβπ) | |
4 | eqid 2730 | . . 3 β’ (normβπ) = (normβπ) | |
5 | 1, 2, 3, 4 | nmofval 24453 | . 2 β’ ((π β NrmGrp β§ π β NrmGrp) β π = (π β (π GrpHom π) β¦ inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ)((normβπ)β(πβπ₯)) β€ (π Β· ((normβπ)βπ₯))}, β*, < ))) |
6 | ssrab2 4078 | . . . 4 β’ {π β (0[,)+β) β£ βπ₯ β (Baseβπ)((normβπ)β(πβπ₯)) β€ (π Β· ((normβπ)βπ₯))} β (0[,)+β) | |
7 | icossxr 13415 | . . . 4 β’ (0[,)+β) β β* | |
8 | 6, 7 | sstri 3992 | . . 3 β’ {π β (0[,)+β) β£ βπ₯ β (Baseβπ)((normβπ)β(πβπ₯)) β€ (π Β· ((normβπ)βπ₯))} β β* |
9 | infxrcl 13318 | . . 3 β’ ({π β (0[,)+β) β£ βπ₯ β (Baseβπ)((normβπ)β(πβπ₯)) β€ (π Β· ((normβπ)βπ₯))} β β* β inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ)((normβπ)β(πβπ₯)) β€ (π Β· ((normβπ)βπ₯))}, β*, < ) β β*) | |
10 | 8, 9 | mp1i 13 | . 2 β’ (((π β NrmGrp β§ π β NrmGrp) β§ π β (π GrpHom π)) β inf({π β (0[,)+β) β£ βπ₯ β (Baseβπ)((normβπ)β(πβπ₯)) β€ (π Β· ((normβπ)βπ₯))}, β*, < ) β β*) |
11 | 5, 10 | fmpt3d 7118 | 1 β’ ((π β NrmGrp β§ π β NrmGrp) β π:(π GrpHom π)βΆβ*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β wss 3949 class class class wbr 5149 βΆwf 6540 βcfv 6544 (class class class)co 7413 infcinf 9440 0cc0 11114 Β· cmul 11119 +βcpnf 11251 β*cxr 11253 < clt 11254 β€ cle 11255 [,)cico 13332 Basecbs 17150 GrpHom cghm 19129 normcnm 24307 NrmGrpcngp 24308 normOp cnmo 24444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-ico 13336 df-nmo 24447 |
This theorem is referenced by: nmocl 24459 isnghm 24462 |
Copyright terms: Public domain | W3C validator |