![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmof | Structured version Visualization version GIF version |
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
Ref | Expression |
---|---|
nmof | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
2 | eqid 2728 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2728 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
4 | eqid 2728 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
5 | 1, 2, 3, 4 | nmofval 24630 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ))) |
6 | ssrab2 4075 | . . . 4 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ (0[,)+∞) | |
7 | icossxr 13441 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
8 | 6, 7 | sstri 3989 | . . 3 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* |
9 | infxrcl 13344 | . . 3 ⊢ ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝑓 ∈ (𝑆 GrpHom 𝑇)) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*) |
11 | 5, 10 | fmpt3d 7126 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 ⊆ wss 3947 class class class wbr 5148 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 infcinf 9464 0cc0 11138 · cmul 11143 +∞cpnf 11275 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 [,)cico 13358 Basecbs 17179 GrpHom cghm 19166 normcnm 24484 NrmGrpcngp 24485 normOp cnmo 24621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-ico 13362 df-nmo 24624 |
This theorem is referenced by: nmocl 24636 isnghm 24639 |
Copyright terms: Public domain | W3C validator |