MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmof Structured version   Visualization version   GIF version

Theorem nmof 24656
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmof ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)

Proof of Theorem nmof
Dummy variables 𝑓 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . 3 𝑁 = (𝑆 normOp 𝑇)
2 eqid 2735 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2735 . . 3 (norm‘𝑇) = (norm‘𝑇)
51, 2, 3, 4nmofval 24651 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < )))
6 ssrab2 4055 . . . 4 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ (0[,)+∞)
7 icossxr 13447 . . . 4 (0[,)+∞) ⊆ ℝ*
86, 7sstri 3968 . . 3 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ*
9 infxrcl 13348 . . 3 ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*)
108, 9mp1i 13 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝑓 ∈ (𝑆 GrpHom 𝑇)) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*)
115, 10fmpt3d 7105 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  wss 3926   class class class wbr 5119  wf 6526  cfv 6530  (class class class)co 7403  infcinf 9451  0cc0 11127   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  [,)cico 13362  Basecbs 17226   GrpHom cghm 19193  normcnm 24513  NrmGrpcngp 24514   normOp cnmo 24642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-ico 13366  df-nmo 24645
This theorem is referenced by:  nmocl  24657  isnghm  24660
  Copyright terms: Public domain W3C validator