| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmof | Structured version Visualization version GIF version | ||
| Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| Ref | Expression |
|---|---|
| nmof | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2731 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
| 4 | eqid 2731 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 5 | 1, 2, 3, 4 | nmofval 24630 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ))) |
| 6 | ssrab2 4030 | . . . 4 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ (0[,)+∞) | |
| 7 | icossxr 13332 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 8 | 6, 7 | sstri 3944 | . . 3 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* |
| 9 | infxrcl 13233 | . . 3 ⊢ ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝑓 ∈ (𝑆 GrpHom 𝑇)) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*) |
| 11 | 5, 10 | fmpt3d 7049 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3902 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 infcinf 9325 0cc0 11006 · cmul 11011 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,)cico 13247 Basecbs 17120 GrpHom cghm 19125 normcnm 24492 NrmGrpcngp 24493 normOp cnmo 24621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-ico 13251 df-nmo 24624 |
| This theorem is referenced by: nmocl 24636 isnghm 24639 |
| Copyright terms: Public domain | W3C validator |