| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmof | Structured version Visualization version GIF version | ||
| Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| Ref | Expression |
|---|---|
| nmof | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2730 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
| 4 | eqid 2730 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 5 | 1, 2, 3, 4 | nmofval 24609 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ))) |
| 6 | ssrab2 4046 | . . . 4 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ (0[,)+∞) | |
| 7 | icossxr 13400 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 8 | 6, 7 | sstri 3959 | . . 3 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* |
| 9 | infxrcl 13301 | . . 3 ⊢ ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝑓 ∈ (𝑆 GrpHom 𝑇)) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*) |
| 11 | 5, 10 | fmpt3d 7091 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 infcinf 9399 0cc0 11075 · cmul 11080 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,)cico 13315 Basecbs 17186 GrpHom cghm 19151 normcnm 24471 NrmGrpcngp 24472 normOp cnmo 24600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-ico 13319 df-nmo 24603 |
| This theorem is referenced by: nmocl 24615 isnghm 24618 |
| Copyright terms: Public domain | W3C validator |