MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmof Structured version   Visualization version   GIF version

Theorem nmof 24635
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypothesis
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmof ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)

Proof of Theorem nmof
Dummy variables 𝑓 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . 3 𝑁 = (𝑆 normOp 𝑇)
2 eqid 2728 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2728 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2728 . . 3 (norm‘𝑇) = (norm‘𝑇)
51, 2, 3, 4nmofval 24630 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < )))
6 ssrab2 4075 . . . 4 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ (0[,)+∞)
7 icossxr 13441 . . . 4 (0[,)+∞) ⊆ ℝ*
86, 7sstri 3989 . . 3 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ*
9 infxrcl 13344 . . 3 ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*)
108, 9mp1i 13 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝑓 ∈ (𝑆 GrpHom 𝑇)) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑆)((norm‘𝑇)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑆)‘𝑥))}, ℝ*, < ) ∈ ℝ*)
115, 10fmpt3d 7126 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁:(𝑆 GrpHom 𝑇)⟶ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  {crab 3429  wss 3947   class class class wbr 5148  wf 6544  cfv 6548  (class class class)co 7420  infcinf 9464  0cc0 11138   · cmul 11143  +∞cpnf 11275  *cxr 11277   < clt 11278  cle 11279  [,)cico 13358  Basecbs 17179   GrpHom cghm 19166  normcnm 24484  NrmGrpcngp 24485   normOp cnmo 24621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-ico 13362  df-nmo 24624
This theorem is referenced by:  nmocl  24636  isnghm  24639
  Copyright terms: Public domain W3C validator