MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb Structured version   Visualization version   GIF version

Theorem nmolb 24104
Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Baseβ€˜π‘†)
nmofval.3 𝐿 = (normβ€˜π‘†)
nmofval.4 𝑀 = (normβ€˜π‘‡)
Assertion
Ref Expression
nmolb (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴))
Distinct variable groups:   π‘₯,𝐿   π‘₯,𝑀   π‘₯,𝑆   π‘₯,𝑇   π‘₯,𝐴   π‘₯,𝐹   π‘₯,𝑉   π‘₯,𝑁

Proof of Theorem nmolb
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 elrege0 13380 . . 3 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴))
2 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
3 nmofval.2 . . . . . . . 8 𝑉 = (Baseβ€˜π‘†)
4 nmofval.3 . . . . . . . 8 𝐿 = (normβ€˜π‘†)
5 nmofval.4 . . . . . . . 8 𝑀 = (normβ€˜π‘‡)
62, 3, 4, 5nmoval 24102 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) = inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ))
7 ssrab2 4041 . . . . . . . . 9 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† (0[,)+∞)
8 icossxr 13358 . . . . . . . . 9 (0[,)+∞) βŠ† ℝ*
97, 8sstri 3957 . . . . . . . 8 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ*
10 infxrcl 13261 . . . . . . . 8 ({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ* β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ∈ ℝ*)
119, 10mp1i 13 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ∈ ℝ*)
126, 11eqeltrd 2834 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) ∈ ℝ*)
1312xrleidd 13080 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) ≀ (π‘β€˜πΉ))
142, 3, 4, 5nmogelb 24103 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (π‘β€˜πΉ) ∈ ℝ*) β†’ ((π‘β€˜πΉ) ≀ (π‘β€˜πΉ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ)))
1512, 14mpdan 686 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ ((π‘β€˜πΉ) ≀ (π‘β€˜πΉ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ)))
1613, 15mpbid 231 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ))
17 oveq1 7368 . . . . . . . 8 (π‘Ÿ = 𝐴 β†’ (π‘Ÿ Β· (πΏβ€˜π‘₯)) = (𝐴 Β· (πΏβ€˜π‘₯)))
1817breq2d 5121 . . . . . . 7 (π‘Ÿ = 𝐴 β†’ ((π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) ↔ (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯))))
1918ralbidv 3171 . . . . . 6 (π‘Ÿ = 𝐴 β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) ↔ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯))))
20 breq2 5113 . . . . . 6 (π‘Ÿ = 𝐴 β†’ ((π‘β€˜πΉ) ≀ π‘Ÿ ↔ (π‘β€˜πΉ) ≀ 𝐴))
2119, 20imbi12d 345 . . . . 5 (π‘Ÿ = 𝐴 β†’ ((βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ) ↔ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
2221rspccv 3580 . . . 4 (βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ) β†’ (𝐴 ∈ (0[,)+∞) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
2316, 22syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (𝐴 ∈ (0[,)+∞) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
241, 23biimtrrid 242 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ ((𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
25243impib 1117 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  {crab 3406   βŠ† wss 3914   class class class wbr 5109  β€˜cfv 6500  (class class class)co 7361  infcinf 9385  β„cr 11058  0cc0 11059   Β· cmul 11064  +∞cpnf 11194  β„*cxr 11196   < clt 11197   ≀ cle 11198  [,)cico 13275  Basecbs 17091   GrpHom cghm 19013  normcnm 23955  NrmGrpcngp 23956   normOp cnmo 24092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-ico 13279  df-nmo 24095
This theorem is referenced by:  nmolb2d  24105  nmoleub  24118
  Copyright terms: Public domain W3C validator