MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmolb Structured version   Visualization version   GIF version

Theorem nmolb 24233
Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Baseβ€˜π‘†)
nmofval.3 𝐿 = (normβ€˜π‘†)
nmofval.4 𝑀 = (normβ€˜π‘‡)
Assertion
Ref Expression
nmolb (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴))
Distinct variable groups:   π‘₯,𝐿   π‘₯,𝑀   π‘₯,𝑆   π‘₯,𝑇   π‘₯,𝐴   π‘₯,𝐹   π‘₯,𝑉   π‘₯,𝑁

Proof of Theorem nmolb
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 elrege0 13430 . . 3 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≀ 𝐴))
2 nmofval.1 . . . . . . . 8 𝑁 = (𝑆 normOp 𝑇)
3 nmofval.2 . . . . . . . 8 𝑉 = (Baseβ€˜π‘†)
4 nmofval.3 . . . . . . . 8 𝐿 = (normβ€˜π‘†)
5 nmofval.4 . . . . . . . 8 𝑀 = (normβ€˜π‘‡)
62, 3, 4, 5nmoval 24231 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) = inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ))
7 ssrab2 4077 . . . . . . . . 9 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† (0[,)+∞)
8 icossxr 13408 . . . . . . . . 9 (0[,)+∞) βŠ† ℝ*
97, 8sstri 3991 . . . . . . . 8 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ*
10 infxrcl 13311 . . . . . . . 8 ({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ* β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ∈ ℝ*)
119, 10mp1i 13 . . . . . . 7 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ∈ ℝ*)
126, 11eqeltrd 2833 . . . . . 6 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) ∈ ℝ*)
1312xrleidd 13130 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) ≀ (π‘β€˜πΉ))
142, 3, 4, 5nmogelb 24232 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (π‘β€˜πΉ) ∈ ℝ*) β†’ ((π‘β€˜πΉ) ≀ (π‘β€˜πΉ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ)))
1512, 14mpdan 685 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ ((π‘β€˜πΉ) ≀ (π‘β€˜πΉ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ)))
1613, 15mpbid 231 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ))
17 oveq1 7415 . . . . . . . 8 (π‘Ÿ = 𝐴 β†’ (π‘Ÿ Β· (πΏβ€˜π‘₯)) = (𝐴 Β· (πΏβ€˜π‘₯)))
1817breq2d 5160 . . . . . . 7 (π‘Ÿ = 𝐴 β†’ ((π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) ↔ (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯))))
1918ralbidv 3177 . . . . . 6 (π‘Ÿ = 𝐴 β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) ↔ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯))))
20 breq2 5152 . . . . . 6 (π‘Ÿ = 𝐴 β†’ ((π‘β€˜πΉ) ≀ π‘Ÿ ↔ (π‘β€˜πΉ) ≀ 𝐴))
2119, 20imbi12d 344 . . . . 5 (π‘Ÿ = 𝐴 β†’ ((βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ) ↔ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
2221rspccv 3609 . . . 4 (βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ π‘Ÿ) β†’ (𝐴 ∈ (0[,)+∞) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
2316, 22syl 17 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (𝐴 ∈ (0[,)+∞) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
241, 23biimtrrid 242 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ ((𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴)))
25243impib 1116 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) β†’ (βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (𝐴 Β· (πΏβ€˜π‘₯)) β†’ (π‘β€˜πΉ) ≀ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   βŠ† wss 3948   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  infcinf 9435  β„cr 11108  0cc0 11109   Β· cmul 11114  +∞cpnf 11244  β„*cxr 11246   < clt 11247   ≀ cle 11248  [,)cico 13325  Basecbs 17143   GrpHom cghm 19088  normcnm 24084  NrmGrpcngp 24085   normOp cnmo 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-ico 13329  df-nmo 24224
This theorem is referenced by:  nmolb2d  24234  nmoleub  24247
  Copyright terms: Public domain W3C validator