| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmolb | Structured version Visualization version GIF version | ||
| Description: Any upper bound on the values of a linear operator translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
| nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
| Ref | Expression |
|---|---|
| nmolb | ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrege0 13494 | . . 3 ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
| 2 | nmofval.1 | . . . . . . . 8 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 3 | nmofval.2 | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑆) | |
| 4 | nmofval.3 | . . . . . . . 8 ⊢ 𝐿 = (norm‘𝑆) | |
| 5 | nmofval.4 | . . . . . . . 8 ⊢ 𝑀 = (norm‘𝑇) | |
| 6 | 2, 3, 4, 5 | nmoval 24736 | . . . . . . 7 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) |
| 7 | ssrab2 4080 | . . . . . . . . 9 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ (0[,)+∞) | |
| 8 | icossxr 13472 | . . . . . . . . 9 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 9 | 7, 8 | sstri 3993 | . . . . . . . 8 ⊢ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ ℝ* |
| 10 | infxrcl 13375 | . . . . . . . 8 ⊢ ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈ ℝ*) |
| 12 | 6, 11 | eqeltrd 2841 | . . . . . 6 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ∈ ℝ*) |
| 13 | 12 | xrleidd 13194 | . . . . 5 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) ≤ (𝑁‘𝐹)) |
| 14 | 2, 3, 4, 5 | nmogelb 24737 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑁‘𝐹) ∈ ℝ*) → ((𝑁‘𝐹) ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝑟))) |
| 15 | 12, 14 | mpdan 687 | . . . . 5 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝑁‘𝐹) ≤ (𝑁‘𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝑟))) |
| 16 | 13, 15 | mpbid 232 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝑟)) |
| 17 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑟 = 𝐴 → (𝑟 · (𝐿‘𝑥)) = (𝐴 · (𝐿‘𝑥))) | |
| 18 | 17 | breq2d 5155 | . . . . . . 7 ⊢ (𝑟 = 𝐴 → ((𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)))) |
| 19 | 18 | ralbidv 3178 | . . . . . 6 ⊢ (𝑟 = 𝐴 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) ↔ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)))) |
| 20 | breq2 5147 | . . . . . 6 ⊢ (𝑟 = 𝐴 → ((𝑁‘𝐹) ≤ 𝑟 ↔ (𝑁‘𝐹) ≤ 𝐴)) | |
| 21 | 19, 20 | imbi12d 344 | . . . . 5 ⊢ (𝑟 = 𝐴 → ((∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝑟) ↔ (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴))) |
| 22 | 21 | rspccv 3619 | . . . 4 ⊢ (∀𝑟 ∈ (0[,)+∞)(∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝑟) → (𝐴 ∈ (0[,)+∞) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴))) |
| 23 | 16, 22 | syl 17 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐴 ∈ (0[,)+∞) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴))) |
| 24 | 1, 23 | biimtrrid 243 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴))) |
| 25 | 24 | 3impib 1117 | 1 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥)) → (𝑁‘𝐹) ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 infcinf 9481 ℝcr 11154 0cc0 11155 · cmul 11160 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 [,)cico 13389 Basecbs 17247 GrpHom cghm 19230 normcnm 24589 NrmGrpcngp 24590 normOp cnmo 24726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-ico 13393 df-nmo 24729 |
| This theorem is referenced by: nmolb2d 24739 nmoleub 24752 |
| Copyright terms: Public domain | W3C validator |