MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem1 Structured version   Visualization version   GIF version

Theorem uniioombllem1 24650
Description: Lemma for uniioombl 24658. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem1
StepHypRef Expression
1 uniioombl.g . . . . 5 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 eqid 2738 . . . . . 6 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
3 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
42, 3ovolsf 24541 . . . . 5 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
51, 4syl 17 . . . 4 (𝜑𝑇:ℕ⟶(0[,)+∞))
65frnd 6592 . . 3 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
7 rge0ssre 13117 . . 3 (0[,)+∞) ⊆ ℝ
86, 7sstrdi 3929 . 2 (𝜑 → ran 𝑇 ⊆ ℝ)
9 1nn 11914 . . . . 5 1 ∈ ℕ
105fdmd 6595 . . . . 5 (𝜑 → dom 𝑇 = ℕ)
119, 10eleqtrrid 2846 . . . 4 (𝜑 → 1 ∈ dom 𝑇)
1211ne0d 4266 . . 3 (𝜑 → dom 𝑇 ≠ ∅)
13 dm0rn0 5823 . . . 4 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
1413necon3bii 2995 . . 3 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
1512, 14sylib 217 . 2 (𝜑 → ran 𝑇 ≠ ∅)
16 icossxr 13093 . . . . 5 (0[,)+∞) ⊆ ℝ*
176, 16sstrdi 3929 . . . 4 (𝜑 → ran 𝑇 ⊆ ℝ*)
18 supxrcl 12978 . . . 4 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
1917, 18syl 17 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
20 uniioombl.e . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
2221rpred 12701 . . . . 5 (𝜑𝐶 ∈ ℝ)
2320, 22readdcld 10935 . . . 4 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
2423rexrd 10956 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*)
25 pnfxr 10960 . . . 4 +∞ ∈ ℝ*
2625a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
27 uniioombl.v . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2823ltpnfd 12786 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞)
2919, 24, 26, 27, 28xrlelttrd 12823 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞)
30 supxrbnd 12991 . 2 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
318, 15, 29, 30syl3anc 1369 1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253   cuni 4836  Disj wdisj 5035   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  +crp 12659  (,)cioo 13008  [,)cico 13010  seqcseq 13649  abscabs 14873  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  uniioombllem3  24654  uniioombllem4  24655  uniioombllem5  24656  uniioombllem6  24657
  Copyright terms: Public domain W3C validator