Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniioombllem1 | Structured version Visualization version GIF version |
Description: Lemma for uniioombl 24734. (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
uniioombl.a | ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) |
uniioombl.e | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
uniioombl.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
uniioombl.g | ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.s | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) |
uniioombl.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
uniioombl.v | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
Ref | Expression |
---|---|
uniioombllem1 | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.g | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2739 | . . . . . 6 ⊢ ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) | |
3 | uniioombl.t | . . . . . 6 ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) | |
4 | 2, 3 | ovolsf 24617 | . . . . 5 ⊢ (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
6 | 5 | frnd 6604 | . . 3 ⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
7 | rge0ssre 13170 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
8 | 6, 7 | sstrdi 3937 | . 2 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
9 | 1nn 11967 | . . . . 5 ⊢ 1 ∈ ℕ | |
10 | 5 | fdmd 6607 | . . . . 5 ⊢ (𝜑 → dom 𝑇 = ℕ) |
11 | 9, 10 | eleqtrrid 2847 | . . . 4 ⊢ (𝜑 → 1 ∈ dom 𝑇) |
12 | 11 | ne0d 4274 | . . 3 ⊢ (𝜑 → dom 𝑇 ≠ ∅) |
13 | dm0rn0 5831 | . . . 4 ⊢ (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅) | |
14 | 13 | necon3bii 2997 | . . 3 ⊢ (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅) |
15 | 12, 14 | sylib 217 | . 2 ⊢ (𝜑 → ran 𝑇 ≠ ∅) |
16 | icossxr 13146 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ* | |
17 | 6, 16 | sstrdi 3937 | . . . 4 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ*) |
18 | supxrcl 13031 | . . . 4 ⊢ (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) |
20 | uniioombl.e | . . . . 5 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
21 | uniioombl.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
22 | 21 | rpred 12754 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 20, 22 | readdcld 10988 | . . . 4 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
24 | 23 | rexrd 11009 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*) |
25 | pnfxr 11013 | . . . 4 ⊢ +∞ ∈ ℝ* | |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | uniioombl.v | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
28 | 23 | ltpnfd 12839 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞) |
29 | 19, 24, 26, 27, 28 | xrlelttrd 12876 | . 2 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞) |
30 | supxrbnd 13044 | . 2 ⊢ ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | |
31 | 8, 15, 29, 30 | syl3anc 1369 | 1 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 ∪ cuni 4844 Disj wdisj 5043 class class class wbr 5078 × cxp 5586 dom cdm 5588 ran crn 5589 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 supcsup 9160 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 +∞cpnf 10990 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 − cmin 11188 ℕcn 11956 ℝ+crp 12712 (,)cioo 13061 [,)cico 13063 seqcseq 13702 abscabs 14926 vol*covol 24607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-ico 13067 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 |
This theorem is referenced by: uniioombllem3 24730 uniioombllem4 24731 uniioombllem5 24732 uniioombllem6 24733 |
Copyright terms: Public domain | W3C validator |