MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem1 Structured version   Visualization version   GIF version

Theorem uniioombllem1 25098
Description: Lemma for uniioombl 25106. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem1
StepHypRef Expression
1 uniioombl.g . . . . 5 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 eqid 2733 . . . . . 6 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
3 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
42, 3ovolsf 24989 . . . . 5 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
51, 4syl 17 . . . 4 (𝜑𝑇:ℕ⟶(0[,)+∞))
65frnd 6726 . . 3 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
7 rge0ssre 13433 . . 3 (0[,)+∞) ⊆ ℝ
86, 7sstrdi 3995 . 2 (𝜑 → ran 𝑇 ⊆ ℝ)
9 1nn 12223 . . . . 5 1 ∈ ℕ
105fdmd 6729 . . . . 5 (𝜑 → dom 𝑇 = ℕ)
119, 10eleqtrrid 2841 . . . 4 (𝜑 → 1 ∈ dom 𝑇)
1211ne0d 4336 . . 3 (𝜑 → dom 𝑇 ≠ ∅)
13 dm0rn0 5925 . . . 4 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
1413necon3bii 2994 . . 3 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
1512, 14sylib 217 . 2 (𝜑 → ran 𝑇 ≠ ∅)
16 icossxr 13409 . . . . 5 (0[,)+∞) ⊆ ℝ*
176, 16sstrdi 3995 . . . 4 (𝜑 → ran 𝑇 ⊆ ℝ*)
18 supxrcl 13294 . . . 4 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
1917, 18syl 17 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
20 uniioombl.e . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
2221rpred 13016 . . . . 5 (𝜑𝐶 ∈ ℝ)
2320, 22readdcld 11243 . . . 4 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
2423rexrd 11264 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*)
25 pnfxr 11268 . . . 4 +∞ ∈ ℝ*
2625a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
27 uniioombl.v . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2823ltpnfd 13101 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞)
2919, 24, 26, 27, 28xrlelttrd 13139 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞)
30 supxrbnd 13307 . 2 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
318, 15, 29, 30syl3anc 1372 1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2941  cin 3948  wss 3949  c0 4323   cuni 4909  Disj wdisj 5114   class class class wbr 5149   × cxp 5675  dom cdm 5677  ran crn 5678  ccom 5681  wf 6540  cfv 6544  (class class class)co 7409  supcsup 9435  cr 11109  0cc0 11110  1c1 11111   + caddc 11113  +∞cpnf 11245  *cxr 11247   < clt 11248  cle 11249  cmin 11444  cn 12212  +crp 12974  (,)cioo 13324  [,)cico 13326  seqcseq 13966  abscabs 15181  vol*covol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-fz 13485  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  uniioombllem3  25102  uniioombllem4  25103  uniioombllem5  25104  uniioombllem6  25105
  Copyright terms: Public domain W3C validator