| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniioombllem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for uniioombl 25547. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
| uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| uniioombl.a | ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) |
| uniioombl.e | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
| uniioombl.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| uniioombl.g | ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| uniioombl.s | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) |
| uniioombl.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
| uniioombl.v | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
| Ref | Expression |
|---|---|
| uniioombllem1 | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.g | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | eqid 2736 | . . . . . 6 ⊢ ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) | |
| 3 | uniioombl.t | . . . . . 6 ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) | |
| 4 | 2, 3 | ovolsf 25430 | . . . . 5 ⊢ (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
| 6 | 5 | frnd 6719 | . . 3 ⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
| 7 | rge0ssre 13478 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
| 8 | 6, 7 | sstrdi 3976 | . 2 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
| 9 | 1nn 12256 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 10 | 5 | fdmd 6721 | . . . . 5 ⊢ (𝜑 → dom 𝑇 = ℕ) |
| 11 | 9, 10 | eleqtrrid 2842 | . . . 4 ⊢ (𝜑 → 1 ∈ dom 𝑇) |
| 12 | 11 | ne0d 4322 | . . 3 ⊢ (𝜑 → dom 𝑇 ≠ ∅) |
| 13 | dm0rn0 5909 | . . . 4 ⊢ (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅) | |
| 14 | 13 | necon3bii 2985 | . . 3 ⊢ (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅) |
| 15 | 12, 14 | sylib 218 | . 2 ⊢ (𝜑 → ran 𝑇 ≠ ∅) |
| 16 | icossxr 13454 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 17 | 6, 16 | sstrdi 3976 | . . . 4 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ*) |
| 18 | supxrcl 13336 | . . . 4 ⊢ (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) |
| 20 | uniioombl.e | . . . . 5 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
| 21 | uniioombl.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 22 | 21 | rpred 13056 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 23 | 20, 22 | readdcld 11269 | . . . 4 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
| 24 | 23 | rexrd 11290 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*) |
| 25 | pnfxr 11294 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 27 | uniioombl.v | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
| 28 | 23 | ltpnfd 13142 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞) |
| 29 | 19, 24, 26, 27, 28 | xrlelttrd 13181 | . 2 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞) |
| 30 | supxrbnd 13349 | . 2 ⊢ ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | |
| 31 | 8, 15, 29, 30 | syl3anc 1373 | 1 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 Disj wdisj 5091 class class class wbr 5124 × cxp 5657 dom cdm 5659 ran crn 5660 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 supcsup 9457 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 − cmin 11471 ℕcn 12245 ℝ+crp 13013 (,)cioo 13367 [,)cico 13369 seqcseq 14024 abscabs 15258 vol*covol 25420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 |
| This theorem is referenced by: uniioombllem3 25543 uniioombllem4 25544 uniioombllem5 25545 uniioombllem6 25546 |
| Copyright terms: Public domain | W3C validator |