MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem1 Structured version   Visualization version   GIF version

Theorem uniioombllem1 23853
Description: Lemma for uniioombl 23861. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem1
StepHypRef Expression
1 uniioombl.g . . . . 5 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 eqid 2793 . . . . . 6 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
3 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
42, 3ovolsf 23744 . . . . 5 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
51, 4syl 17 . . . 4 (𝜑𝑇:ℕ⟶(0[,)+∞))
65frnd 6381 . . 3 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
7 rge0ssre 12683 . . 3 (0[,)+∞) ⊆ ℝ
86, 7syl6ss 3896 . 2 (𝜑 → ran 𝑇 ⊆ ℝ)
9 1nn 11486 . . . . 5 1 ∈ ℕ
105fdmd 6383 . . . . 5 (𝜑 → dom 𝑇 = ℕ)
119, 10syl5eleqr 2888 . . . 4 (𝜑 → 1 ∈ dom 𝑇)
1211ne0d 4215 . . 3 (𝜑 → dom 𝑇 ≠ ∅)
13 dm0rn0 5671 . . . 4 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
1413necon3bii 3034 . . 3 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
1512, 14sylib 219 . 2 (𝜑 → ran 𝑇 ≠ ∅)
16 icossxr 12660 . . . . 5 (0[,)+∞) ⊆ ℝ*
176, 16syl6ss 3896 . . . 4 (𝜑 → ran 𝑇 ⊆ ℝ*)
18 supxrcl 12547 . . . 4 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
1917, 18syl 17 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
20 uniioombl.e . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
2221rpred 12270 . . . . 5 (𝜑𝐶 ∈ ℝ)
2320, 22readdcld 10505 . . . 4 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
2423rexrd 10526 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*)
25 pnfxr 10530 . . . 4 +∞ ∈ ℝ*
2625a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
27 uniioombl.v . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2823ltpnfd 12355 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞)
2919, 24, 26, 27, 28xrlelttrd 12392 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞)
30 supxrbnd 12560 . 2 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
318, 15, 29, 30syl3anc 1362 1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1520  wcel 2079  wne 2982  cin 3853  wss 3854  c0 4206   cuni 4739  Disj wdisj 4924   class class class wbr 4956   × cxp 5433  dom cdm 5435  ran crn 5436  ccom 5439  wf 6213  cfv 6217  (class class class)co 7007  supcsup 8740  cr 10371  0cc0 10372  1c1 10373   + caddc 10375  +∞cpnf 10507  *cxr 10509   < clt 10510  cle 10511  cmin 10706  cn 11475  +crp 12228  (,)cioo 12577  [,)cico 12579  seqcseq 13207  abscabs 14415  vol*covol 23734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-sup 8742  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-z 11819  df-uz 12083  df-rp 12229  df-ico 12583  df-fz 12732  df-seq 13208  df-exp 13268  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417
This theorem is referenced by:  uniioombllem3  23857  uniioombllem4  23858  uniioombllem5  23859  uniioombllem6  23860
  Copyright terms: Public domain W3C validator