Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniioombllem1 | Structured version Visualization version GIF version |
Description: Lemma for uniioombl 24658. (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
uniioombl.a | ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) |
uniioombl.e | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
uniioombl.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
uniioombl.g | ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.s | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) |
uniioombl.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
uniioombl.v | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
Ref | Expression |
---|---|
uniioombllem1 | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.g | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2738 | . . . . . 6 ⊢ ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) | |
3 | uniioombl.t | . . . . . 6 ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) | |
4 | 2, 3 | ovolsf 24541 | . . . . 5 ⊢ (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
6 | 5 | frnd 6592 | . . 3 ⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
7 | rge0ssre 13117 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
8 | 6, 7 | sstrdi 3929 | . 2 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
9 | 1nn 11914 | . . . . 5 ⊢ 1 ∈ ℕ | |
10 | 5 | fdmd 6595 | . . . . 5 ⊢ (𝜑 → dom 𝑇 = ℕ) |
11 | 9, 10 | eleqtrrid 2846 | . . . 4 ⊢ (𝜑 → 1 ∈ dom 𝑇) |
12 | 11 | ne0d 4266 | . . 3 ⊢ (𝜑 → dom 𝑇 ≠ ∅) |
13 | dm0rn0 5823 | . . . 4 ⊢ (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅) | |
14 | 13 | necon3bii 2995 | . . 3 ⊢ (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅) |
15 | 12, 14 | sylib 217 | . 2 ⊢ (𝜑 → ran 𝑇 ≠ ∅) |
16 | icossxr 13093 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ* | |
17 | 6, 16 | sstrdi 3929 | . . . 4 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ*) |
18 | supxrcl 12978 | . . . 4 ⊢ (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) |
20 | uniioombl.e | . . . . 5 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
21 | uniioombl.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
22 | 21 | rpred 12701 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 20, 22 | readdcld 10935 | . . . 4 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
24 | 23 | rexrd 10956 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*) |
25 | pnfxr 10960 | . . . 4 ⊢ +∞ ∈ ℝ* | |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | uniioombl.v | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
28 | 23 | ltpnfd 12786 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞) |
29 | 19, 24, 26, 27, 28 | xrlelttrd 12823 | . 2 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞) |
30 | supxrbnd 12991 | . 2 ⊢ ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | |
31 | 8, 15, 29, 30 | syl3anc 1369 | 1 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 Disj wdisj 5035 class class class wbr 5070 × cxp 5578 dom cdm 5580 ran crn 5581 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℝ+crp 12659 (,)cioo 13008 [,)cico 13010 seqcseq 13649 abscabs 14873 vol*covol 24531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: uniioombllem3 24654 uniioombllem4 24655 uniioombllem5 24656 uniioombllem6 24657 |
Copyright terms: Public domain | W3C validator |