MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem1 Structured version   Visualization version   GIF version

Theorem uniioombllem1 25097
Description: Lemma for uniioombl 25105. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
Assertion
Ref Expression
uniioombllem1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑇
Allowed substitution hints:   𝑆(𝑥)   𝐸(𝑥)

Proof of Theorem uniioombllem1
StepHypRef Expression
1 uniioombl.g . . . . 5 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 eqid 2732 . . . . . 6 ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺)
3 uniioombl.t . . . . . 6 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
42, 3ovolsf 24988 . . . . 5 (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞))
51, 4syl 17 . . . 4 (𝜑𝑇:ℕ⟶(0[,)+∞))
65frnd 6725 . . 3 (𝜑 → ran 𝑇 ⊆ (0[,)+∞))
7 rge0ssre 13432 . . 3 (0[,)+∞) ⊆ ℝ
86, 7sstrdi 3994 . 2 (𝜑 → ran 𝑇 ⊆ ℝ)
9 1nn 12222 . . . . 5 1 ∈ ℕ
105fdmd 6728 . . . . 5 (𝜑 → dom 𝑇 = ℕ)
119, 10eleqtrrid 2840 . . . 4 (𝜑 → 1 ∈ dom 𝑇)
1211ne0d 4335 . . 3 (𝜑 → dom 𝑇 ≠ ∅)
13 dm0rn0 5924 . . . 4 (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅)
1413necon3bii 2993 . . 3 (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅)
1512, 14sylib 217 . 2 (𝜑 → ran 𝑇 ≠ ∅)
16 icossxr 13408 . . . . 5 (0[,)+∞) ⊆ ℝ*
176, 16sstrdi 3994 . . . 4 (𝜑 → ran 𝑇 ⊆ ℝ*)
18 supxrcl 13293 . . . 4 (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
1917, 18syl 17 . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*)
20 uniioombl.e . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
21 uniioombl.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
2221rpred 13015 . . . . 5 (𝜑𝐶 ∈ ℝ)
2320, 22readdcld 11242 . . . 4 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
2423rexrd 11263 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*)
25 pnfxr 11267 . . . 4 +∞ ∈ ℝ*
2625a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
27 uniioombl.v . . 3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
2823ltpnfd 13100 . . 3 (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞)
2919, 24, 26, 27, 28xrlelttrd 13138 . 2 (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞)
30 supxrbnd 13306 . 2 ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
318, 15, 29, 30syl3anc 1371 1 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2940  cin 3947  wss 3948  c0 4322   cuni 4908  Disj wdisj 5113   class class class wbr 5148   × cxp 5674  dom cdm 5676  ran crn 5677  ccom 5680  wf 6539  cfv 6543  (class class class)co 7408  supcsup 9434  cr 11108  0cc0 11109  1c1 11110   + caddc 11112  +∞cpnf 11244  *cxr 11246   < clt 11247  cle 11248  cmin 11443  cn 12211  +crp 12973  (,)cioo 13323  [,)cico 13325  seqcseq 13965  abscabs 15180  vol*covol 24978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-ico 13329  df-fz 13484  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182
This theorem is referenced by:  uniioombllem3  25101  uniioombllem4  25102  uniioombllem5  25103  uniioombllem6  25104
  Copyright terms: Public domain W3C validator