| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniioombllem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for uniioombl 25488. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
| uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| uniioombl.a | ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) |
| uniioombl.e | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
| uniioombl.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| uniioombl.g | ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| uniioombl.s | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) |
| uniioombl.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
| uniioombl.v | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
| Ref | Expression |
|---|---|
| uniioombllem1 | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.g | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) | |
| 3 | uniioombl.t | . . . . . 6 ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) | |
| 4 | 2, 3 | ovolsf 25371 | . . . . 5 ⊢ (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
| 6 | 5 | frnd 6660 | . . 3 ⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
| 7 | rge0ssre 13359 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
| 8 | 6, 7 | sstrdi 3948 | . 2 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
| 9 | 1nn 12139 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 10 | 5 | fdmd 6662 | . . . . 5 ⊢ (𝜑 → dom 𝑇 = ℕ) |
| 11 | 9, 10 | eleqtrrid 2835 | . . . 4 ⊢ (𝜑 → 1 ∈ dom 𝑇) |
| 12 | 11 | ne0d 4293 | . . 3 ⊢ (𝜑 → dom 𝑇 ≠ ∅) |
| 13 | dm0rn0 5867 | . . . 4 ⊢ (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅) | |
| 14 | 13 | necon3bii 2977 | . . 3 ⊢ (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅) |
| 15 | 12, 14 | sylib 218 | . 2 ⊢ (𝜑 → ran 𝑇 ≠ ∅) |
| 16 | icossxr 13335 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 17 | 6, 16 | sstrdi 3948 | . . . 4 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ*) |
| 18 | supxrcl 13217 | . . . 4 ⊢ (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) |
| 20 | uniioombl.e | . . . . 5 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
| 21 | uniioombl.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 22 | 21 | rpred 12937 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 23 | 20, 22 | readdcld 11144 | . . . 4 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
| 24 | 23 | rexrd 11165 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*) |
| 25 | pnfxr 11169 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 27 | uniioombl.v | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
| 28 | 23 | ltpnfd 13023 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞) |
| 29 | 19, 24, 26, 27, 28 | xrlelttrd 13062 | . 2 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞) |
| 30 | supxrbnd 13230 | . 2 ⊢ ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | |
| 31 | 8, 15, 29, 30 | syl3anc 1373 | 1 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 ∪ cuni 4858 Disj wdisj 5059 class class class wbr 5092 × cxp 5617 dom cdm 5619 ran crn 5620 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 supcsup 9330 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 − cmin 11347 ℕcn 12128 ℝ+crp 12893 (,)cioo 13248 [,)cico 13250 seqcseq 13908 abscabs 15141 vol*covol 25361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: uniioombllem3 25484 uniioombllem4 25485 uniioombllem5 25486 uniioombllem6 25487 |
| Copyright terms: Public domain | W3C validator |