![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniioombllem1 | Structured version Visualization version GIF version |
Description: Lemma for uniioombl 25538. (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
uniioombl.a | ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) |
uniioombl.e | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
uniioombl.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
uniioombl.g | ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.s | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) |
uniioombl.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
uniioombl.v | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
Ref | Expression |
---|---|
uniioombllem1 | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.g | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2728 | . . . . . 6 ⊢ ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) | |
3 | uniioombl.t | . . . . . 6 ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) | |
4 | 2, 3 | ovolsf 25421 | . . . . 5 ⊢ (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
6 | 5 | frnd 6735 | . . 3 ⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
7 | rge0ssre 13473 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
8 | 6, 7 | sstrdi 3994 | . 2 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
9 | 1nn 12261 | . . . . 5 ⊢ 1 ∈ ℕ | |
10 | 5 | fdmd 6738 | . . . . 5 ⊢ (𝜑 → dom 𝑇 = ℕ) |
11 | 9, 10 | eleqtrrid 2836 | . . . 4 ⊢ (𝜑 → 1 ∈ dom 𝑇) |
12 | 11 | ne0d 4339 | . . 3 ⊢ (𝜑 → dom 𝑇 ≠ ∅) |
13 | dm0rn0 5931 | . . . 4 ⊢ (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅) | |
14 | 13 | necon3bii 2990 | . . 3 ⊢ (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅) |
15 | 12, 14 | sylib 217 | . 2 ⊢ (𝜑 → ran 𝑇 ≠ ∅) |
16 | icossxr 13449 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ* | |
17 | 6, 16 | sstrdi 3994 | . . . 4 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ*) |
18 | supxrcl 13334 | . . . 4 ⊢ (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) |
20 | uniioombl.e | . . . . 5 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
21 | uniioombl.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
22 | 21 | rpred 13056 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 20, 22 | readdcld 11281 | . . . 4 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
24 | 23 | rexrd 11302 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*) |
25 | pnfxr 11306 | . . . 4 ⊢ +∞ ∈ ℝ* | |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | uniioombl.v | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
28 | 23 | ltpnfd 13141 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞) |
29 | 19, 24, 26, 27, 28 | xrlelttrd 13179 | . 2 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞) |
30 | supxrbnd 13347 | . 2 ⊢ ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | |
31 | 8, 15, 29, 30 | syl3anc 1368 | 1 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 ∪ cuni 4912 Disj wdisj 5117 class class class wbr 5152 × cxp 5680 dom cdm 5682 ran crn 5683 ∘ ccom 5686 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 supcsup 9471 ℝcr 11145 0cc0 11146 1c1 11147 + caddc 11149 +∞cpnf 11283 ℝ*cxr 11285 < clt 11286 ≤ cle 11287 − cmin 11482 ℕcn 12250 ℝ+crp 13014 (,)cioo 13364 [,)cico 13366 seqcseq 14006 abscabs 15221 vol*covol 25411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-ico 13370 df-fz 13525 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 |
This theorem is referenced by: uniioombllem3 25534 uniioombllem4 25535 uniioombllem5 25536 uniioombllem6 25537 |
Copyright terms: Public domain | W3C validator |