![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniioombllem1 | Structured version Visualization version GIF version |
Description: Lemma for uniioombl 25106. (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
uniioombl.a | ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) |
uniioombl.e | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
uniioombl.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
uniioombl.g | ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.s | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) |
uniioombl.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
uniioombl.v | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
Ref | Expression |
---|---|
uniioombllem1 | ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.g | . . . . 5 ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2733 | . . . . . 6 ⊢ ((abs ∘ − ) ∘ 𝐺) = ((abs ∘ − ) ∘ 𝐺) | |
3 | uniioombl.t | . . . . . 6 ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) | |
4 | 2, 3 | ovolsf 24989 | . . . . 5 ⊢ (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑇:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇:ℕ⟶(0[,)+∞)) |
6 | 5 | frnd 6726 | . . 3 ⊢ (𝜑 → ran 𝑇 ⊆ (0[,)+∞)) |
7 | rge0ssre 13433 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
8 | 6, 7 | sstrdi 3995 | . 2 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ) |
9 | 1nn 12223 | . . . . 5 ⊢ 1 ∈ ℕ | |
10 | 5 | fdmd 6729 | . . . . 5 ⊢ (𝜑 → dom 𝑇 = ℕ) |
11 | 9, 10 | eleqtrrid 2841 | . . . 4 ⊢ (𝜑 → 1 ∈ dom 𝑇) |
12 | 11 | ne0d 4336 | . . 3 ⊢ (𝜑 → dom 𝑇 ≠ ∅) |
13 | dm0rn0 5925 | . . . 4 ⊢ (dom 𝑇 = ∅ ↔ ran 𝑇 = ∅) | |
14 | 13 | necon3bii 2994 | . . 3 ⊢ (dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅) |
15 | 12, 14 | sylib 217 | . 2 ⊢ (𝜑 → ran 𝑇 ≠ ∅) |
16 | icossxr 13409 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ* | |
17 | 6, 16 | sstrdi 3995 | . . . 4 ⊢ (𝜑 → ran 𝑇 ⊆ ℝ*) |
18 | supxrcl 13294 | . . . 4 ⊢ (ran 𝑇 ⊆ ℝ* → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ*) |
20 | uniioombl.e | . . . . 5 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
21 | uniioombl.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
22 | 21 | rpred 13016 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 20, 22 | readdcld 11243 | . . . 4 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
24 | 23 | rexrd 11264 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ*) |
25 | pnfxr 11268 | . . . 4 ⊢ +∞ ∈ ℝ* | |
26 | 25 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | uniioombl.v | . . 3 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
28 | 23 | ltpnfd 13101 | . . 3 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) < +∞) |
29 | 19, 24, 26, 27, 28 | xrlelttrd 13139 | . 2 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) < +∞) |
30 | supxrbnd 13307 | . 2 ⊢ ((ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ sup(ran 𝑇, ℝ*, < ) < +∞) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | |
31 | 8, 15, 29, 30 | syl3anc 1372 | 1 ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∩ cin 3948 ⊆ wss 3949 ∅c0 4323 ∪ cuni 4909 Disj wdisj 5114 class class class wbr 5149 × cxp 5675 dom cdm 5677 ran crn 5678 ∘ ccom 5681 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 supcsup 9435 ℝcr 11109 0cc0 11110 1c1 11111 + caddc 11113 +∞cpnf 11245 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 − cmin 11444 ℕcn 12212 ℝ+crp 12974 (,)cioo 13324 [,)cico 13326 seqcseq 13966 abscabs 15181 vol*covol 24979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-ico 13330 df-fz 13485 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 |
This theorem is referenced by: uniioombllem3 25102 uniioombllem4 25103 uniioombllem5 25104 uniioombllem6 25105 |
Copyright terms: Public domain | W3C validator |