Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > immul2 | Structured version Visualization version GIF version |
Description: Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
immul2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 10650 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | immul 14528 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | |
3 | 1, 2 | sylan 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) |
4 | rere 14514 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | |
5 | 4 | adantr 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) = 𝐴) |
6 | 5 | oveq1d 7158 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) = (𝐴 · (ℑ‘𝐵))) |
7 | reim0 14510 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
8 | 7 | oveq1d 7158 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((ℑ‘𝐴) · (ℜ‘𝐵)) = (0 · (ℜ‘𝐵))) |
9 | recl 14502 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
10 | 9 | recnd 10692 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ) |
11 | 10 | mul02d 10861 | . . . 4 ⊢ (𝐵 ∈ ℂ → (0 · (ℜ‘𝐵)) = 0) |
12 | 8, 11 | sylan9eq 2814 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) = 0) |
13 | 6, 12 | oveq12d 7161 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) = ((𝐴 · (ℑ‘𝐵)) + 0)) |
14 | imcl 14503 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
15 | 14 | recnd 10692 | . . . 4 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ) |
16 | mulcl 10644 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (𝐴 · (ℑ‘𝐵)) ∈ ℂ) | |
17 | 1, 15, 16 | syl2an 599 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 · (ℑ‘𝐵)) ∈ ℂ) |
18 | 17 | addid1d 10863 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (ℑ‘𝐵)) + 0) = (𝐴 · (ℑ‘𝐵))) |
19 | 3, 13, 18 | 3eqtrd 2798 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ‘cfv 6328 (class class class)co 7143 ℂcc 10558 ℝcr 10559 0cc0 10560 + caddc 10563 · cmul 10565 ℜcre 14489 ℑcim 14490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-br 5026 df-opab 5088 df-mpt 5106 df-id 5423 df-po 5436 df-so 5437 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-2 11722 df-cj 14491 df-re 14492 df-im 14493 |
This theorem is referenced by: imdiv 14530 immul2d 14620 cxpsqrtlem 25377 atantan 25593 |
Copyright terms: Public domain | W3C validator |