![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imcl | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
imcl | โข (๐ด โ โ โ (โโ๐ด) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imre 15053 | . 2 โข (๐ด โ โ โ (โโ๐ด) = (โโ(-i ยท ๐ด))) | |
2 | negicn 11459 | . . . 4 โข -i โ โ | |
3 | mulcl 11191 | . . . 4 โข ((-i โ โ โง ๐ด โ โ) โ (-i ยท ๐ด) โ โ) | |
4 | 2, 3 | mpan 687 | . . 3 โข (๐ด โ โ โ (-i ยท ๐ด) โ โ) |
5 | recl 15055 | . . 3 โข ((-i ยท ๐ด) โ โ โ (โโ(-i ยท ๐ด)) โ โ) | |
6 | 4, 5 | syl 17 | . 2 โข (๐ด โ โ โ (โโ(-i ยท ๐ด)) โ โ) |
7 | 1, 6 | eqeltrd 2825 | 1 โข (๐ด โ โ โ (โโ๐ด) โ โ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2098 โcfv 6534 (class class class)co 7402 โcc 11105 โcr 11106 ici 11109 ยท cmul 11112 -cneg 11443 โcre 15042 โcim 15043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-2 12273 df-cj 15044 df-re 15045 df-im 15046 |
This theorem is referenced by: imf 15058 remim 15062 mulre 15066 cjreb 15068 recj 15069 reneg 15070 readd 15071 remullem 15073 remul2 15075 imcj 15077 imneg 15078 imadd 15079 imsub 15080 immul2 15082 imdiv 15083 cjcj 15085 cjadd 15086 ipcnval 15088 cjmulval 15090 cjmulge0 15091 cjneg 15092 imval2 15096 cnrecnv 15110 imcli 15113 imcld 15140 absrele 15253 efeul 16104 absef 16139 absefib 16140 efieq1re 16141 cnsubrg 21291 mbfconst 25486 itgconst 25672 tanregt0 26392 ellogrn 26412 argimgt0 26465 argimlt0 26466 logneg2 26468 tanarg 26472 logf1o2 26503 logreclem 26613 asinlem3a 26721 asinlem3 26722 zetacvg 26866 ccfldextdgrr 33229 sqrtcval 42906 sigarls 46083 |
Copyright terms: Public domain | W3C validator |