Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imcl | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
imcl | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imre 14671 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
2 | negicn 11079 | . . . 4 ⊢ -i ∈ ℂ | |
3 | mulcl 10813 | . . . 4 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
5 | recl 14673 | . . 3 ⊢ ((-i · 𝐴) ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) |
7 | 1, 6 | eqeltrd 2838 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 ℝcr 10728 ici 10731 · cmul 10734 -cneg 11063 ℜcre 14660 ℑcim 14661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-cj 14662 df-re 14663 df-im 14664 |
This theorem is referenced by: imf 14676 remim 14680 mulre 14684 cjreb 14686 recj 14687 reneg 14688 readd 14689 remullem 14691 remul2 14693 imcj 14695 imneg 14696 imadd 14697 imsub 14698 immul2 14700 imdiv 14701 cjcj 14703 cjadd 14704 ipcnval 14706 cjmulval 14708 cjmulge0 14709 cjneg 14710 imval2 14714 cnrecnv 14728 imcli 14731 imcld 14758 absrele 14872 efeul 15723 absef 15758 absefib 15759 efieq1re 15760 cnsubrg 20423 mbfconst 24530 itgconst 24716 tanregt0 25428 ellogrn 25448 argimgt0 25500 argimlt0 25501 logneg2 25503 tanarg 25507 logf1o2 25538 logreclem 25645 asinlem3a 25753 asinlem3 25754 zetacvg 25897 ccfldextdgrr 31456 sqrtcval 40925 sigarls 44045 |
Copyright terms: Public domain | W3C validator |