MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imcl Structured version   Visualization version   GIF version

Theorem imcl 14058
Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imcl (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)

Proof of Theorem imcl
StepHypRef Expression
1 imre 14055 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2 negicn 10483 . . . 4 -i ∈ ℂ
3 mulcl 10221 . . . 4 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
42, 3mpan 662 . . 3 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
5 recl 14057 . . 3 ((-i · 𝐴) ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ)
64, 5syl 17 . 2 (𝐴 ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ)
71, 6eqeltrd 2849 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2144  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  ici 10139   · cmul 10142  -cneg 10468  cre 14044  cim 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-2 11280  df-cj 14046  df-re 14047  df-im 14048
This theorem is referenced by:  imf  14060  remim  14064  mulre  14068  cjreb  14070  recj  14071  reneg  14072  readd  14073  remullem  14075  remul2  14077  imcj  14079  imneg  14080  imadd  14081  imsub  14082  immul2  14084  imdiv  14085  cjcj  14087  cjadd  14088  ipcnval  14090  cjmulval  14092  cjmulge0  14093  cjneg  14094  imval2  14098  cnrecnv  14112  imcli  14115  imcld  14142  absrele  14255  efeul  15097  absef  15132  absefib  15133  efieq1re  15134  cnsubrg  20020  mbfconst  23620  itgconst  23804  tanregt0  24505  ellogrn  24526  argimgt0  24578  argimlt0  24579  logneg2  24581  tanarg  24585  logf1o2  24616  logreclem  24720  asinlem3a  24817  asinlem3  24818  zetacvg  24961  sigarls  41560
  Copyright terms: Public domain W3C validator