| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcl | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| imcl | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imre 15127 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
| 2 | negicn 11483 | . . . 4 ⊢ -i ∈ ℂ | |
| 3 | mulcl 11213 | . . . 4 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
| 5 | recl 15129 | . . 3 ⊢ ((-i · 𝐴) ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) |
| 7 | 1, 6 | eqeltrd 2834 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 ici 11131 · cmul 11134 -cneg 11467 ℜcre 15116 ℑcim 15117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-cj 15118 df-re 15119 df-im 15120 |
| This theorem is referenced by: imf 15132 remim 15136 mulre 15140 cjreb 15142 recj 15143 reneg 15144 readd 15145 remullem 15147 remul2 15149 imcj 15151 imneg 15152 imadd 15153 imsub 15154 immul2 15156 imdiv 15157 cjcj 15159 cjadd 15160 ipcnval 15162 cjmulval 15164 cjmulge0 15165 cjneg 15166 imval2 15170 cnrecnv 15184 imcli 15187 imcld 15214 absrele 15327 efeul 16180 absef 16215 absefib 16216 efieq1re 16217 cnsubrg 21395 mbfconst 25586 itgconst 25772 tanregt0 26500 ellogrn 26520 argimgt0 26573 argimlt0 26574 logneg2 26576 tanarg 26580 logf1o2 26611 logreclem 26724 asinlem3a 26832 asinlem3 26833 zetacvg 26977 ccfldextdgrr 33713 sqrtcval 43665 sigarls 46886 |
| Copyright terms: Public domain | W3C validator |