| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcl | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| imcl | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imre 15012 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
| 2 | negicn 11358 | . . . 4 ⊢ -i ∈ ℂ | |
| 3 | mulcl 11087 | . . . 4 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
| 5 | recl 15014 | . . 3 ⊢ ((-i · 𝐴) ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ) |
| 7 | 1, 6 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 ici 11005 · cmul 11008 -cneg 11342 ℜcre 15001 ℑcim 15002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-cj 15003 df-re 15004 df-im 15005 |
| This theorem is referenced by: imf 15017 remim 15021 mulre 15025 cjreb 15027 recj 15028 reneg 15029 readd 15030 remullem 15032 remul2 15034 imcj 15036 imneg 15037 imadd 15038 imsub 15039 immul2 15041 imdiv 15042 cjcj 15044 cjadd 15045 ipcnval 15047 cjmulval 15049 cjmulge0 15050 cjneg 15051 imval2 15055 cnrecnv 15069 imcli 15072 imcld 15099 absrele 15212 efeul 16068 absef 16103 absefib 16104 efieq1re 16105 cnsubrg 21362 mbfconst 25559 itgconst 25745 tanregt0 26473 ellogrn 26493 argimgt0 26546 argimlt0 26547 logneg2 26549 tanarg 26553 logf1o2 26584 logreclem 26697 asinlem3a 26805 asinlem3 26806 zetacvg 26950 ccfldextdgrr 33680 sqrtcval 43673 sigarls 46894 |
| Copyright terms: Public domain | W3C validator |