MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imcl Structured version   Visualization version   GIF version

Theorem imcl 15147
Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imcl (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)

Proof of Theorem imcl
StepHypRef Expression
1 imre 15144 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
2 negicn 11507 . . . 4 -i ∈ ℂ
3 mulcl 11237 . . . 4 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
42, 3mpan 690 . . 3 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
5 recl 15146 . . 3 ((-i · 𝐴) ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ)
64, 5syl 17 . 2 (𝐴 ∈ ℂ → (ℜ‘(-i · 𝐴)) ∈ ℝ)
71, 6eqeltrd 2839 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  ici 11155   · cmul 11158  -cneg 11491  cre 15133  cim 15134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  imf  15149  remim  15153  mulre  15157  cjreb  15159  recj  15160  reneg  15161  readd  15162  remullem  15164  remul2  15166  imcj  15168  imneg  15169  imadd  15170  imsub  15171  immul2  15173  imdiv  15174  cjcj  15176  cjadd  15177  ipcnval  15179  cjmulval  15181  cjmulge0  15182  cjneg  15183  imval2  15187  cnrecnv  15201  imcli  15204  imcld  15231  absrele  15344  efeul  16195  absef  16230  absefib  16231  efieq1re  16232  cnsubrg  21463  mbfconst  25682  itgconst  25869  tanregt0  26596  ellogrn  26616  argimgt0  26669  argimlt0  26670  logneg2  26672  tanarg  26676  logf1o2  26707  logreclem  26820  asinlem3a  26928  asinlem3  26929  zetacvg  27073  ccfldextdgrr  33697  sqrtcval  43631  sigarls  46813
  Copyright terms: Public domain W3C validator