Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imdiv | Structured version Visualization version GIF version |
Description: Imaginary part of a division. Related to immul2 14848. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
imdiv | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))) | |
2 | 3anass 1094 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))) | |
3 | 1, 2 | bitr4i 277 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) |
4 | rereccl 11693 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ) | |
5 | 4 | anim1i 615 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
6 | 3, 5 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
7 | immul2 14848 | . . 3 ⊢ (((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴))) |
9 | recn 10961 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
10 | divrec2 11650 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
11 | 10 | fveq2d 6778 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴))) |
12 | 9, 11 | syl3an2 1163 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴))) |
13 | imcl 14822 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
14 | 13 | recnd 11003 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘𝐴) ∈ ℂ) |
16 | 9 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) |
17 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
18 | 15, 16, 17 | divrec2d 11755 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((ℑ‘𝐴) / 𝐵) = ((1 / 𝐵) · (ℑ‘𝐴))) |
19 | 8, 12, 18 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 ℑcim 14809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 |
This theorem is referenced by: imdivd 14941 |
Copyright terms: Public domain | W3C validator |