Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imdiv | Structured version Visualization version GIF version |
Description: Imaginary part of a division. Related to immul2 14836. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
imdiv | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 461 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))) | |
2 | 3anass 1094 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℂ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))) | |
3 | 1, 2 | bitr4i 277 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) |
4 | rereccl 11681 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ) | |
5 | 4 | anim1i 615 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℂ) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
6 | 3, 5 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ)) |
7 | immul2 14836 | . . 3 ⊢ (((1 / 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘((1 / 𝐵) · 𝐴)) = ((1 / 𝐵) · (ℑ‘𝐴))) |
9 | recn 10949 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
10 | divrec2 11638 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | |
11 | 10 | fveq2d 6771 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴))) |
12 | 9, 11 | syl3an2 1163 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = (ℑ‘((1 / 𝐵) · 𝐴))) |
13 | imcl 14810 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
14 | 13 | recnd 10991 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘𝐴) ∈ ℂ) |
16 | 9 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ) |
17 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
18 | 15, 16, 17 | divrec2d 11743 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((ℑ‘𝐴) / 𝐵) = ((1 / 𝐵) · (ℑ‘𝐴))) |
19 | 8, 12, 18 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6427 (class class class)co 7268 ℂcc 10857 ℝcr 10858 0cc0 10859 1c1 10860 · cmul 10864 / cdiv 11620 ℑcim 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-2 12024 df-cj 14798 df-re 14799 df-im 14800 |
This theorem is referenced by: imdivd 14929 |
Copyright terms: Public domain | W3C validator |