MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rere Structured version   Visualization version   GIF version

Theorem rere 15071
Description: A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
rere (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)

Proof of Theorem rere
StepHypRef Expression
1 recn 11197 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 rereb 15069 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
43ibi 267 1 (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cfv 6534  cc 11105  cr 11106  cre 15046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-cj 15048  df-re 15049  df-im 15050
This theorem is referenced by:  remul2  15079  immul2  15086  cjmulval  15094  re0  15101  re1  15103  rered  15173  resqreu  15201  resqrtcl  15202  logi  26461  logimul  26488  logneg2  26489  resqrtcn  26624  acoscos  26765  acosbnd  26772  atanrecl  26783  atanlogsublem  26787  atan1  26800  lgamgulmlem2  26902  lgamgulmlem4  26904  dvasin  37075  acos1half  41965  sqrtcvallem1  42931
  Copyright terms: Public domain W3C validator