| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1elunit | Structured version Visualization version GIF version | ||
| Description: One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| 1elunit | ⊢ 1 ∈ (0[,]1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0le1 11701 | . 2 ⊢ 0 ≤ 1 | |
| 3 | 1le1 11806 | . 2 ⊢ 1 ≤ 1 | |
| 4 | elicc01 13427 | . 2 ⊢ (1 ∈ (0[,]1) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 ≤ 1)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1342 | 1 ⊢ 1 ∈ (0[,]1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-icc 13313 |
| This theorem is referenced by: iccpnfcnv 24842 htpycom 24875 htpyid 24876 htpyco1 24877 htpyco2 24878 htpycc 24879 phtpy01 24884 phtpycom 24887 phtpyid 24888 phtpyco2 24889 phtpycc 24890 reparphti 24896 reparphtiOLD 24897 pco1 24915 pcohtpylem 24919 pcoptcl 24921 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevcl 24925 pcorevlem 24926 pi1xfrf 24953 pi1xfr 24955 pi1xfrcnvlem 24956 pi1xfrcnv 24957 pi1cof 24959 pi1coghm 24961 dvlipcn 25899 leibpi 26852 lgamgulmlem2 26940 ttgcontlem1 28812 axpaschlem 28867 iistmd 33892 xrge0iif1 33928 xrge0iifmhm 33929 cnpconn 35217 pconnconn 35218 txpconn 35219 ptpconn 35220 indispconn 35221 connpconn 35222 txsconnlem 35227 txsconn 35228 cvxpconn 35229 cvxsconn 35230 cvmliftphtlem 35304 cvmlift3lem2 35307 cvmlift3lem4 35309 cvmlift3lem5 35310 cvmlift3lem6 35311 cvmlift3lem9 35314 lcmineqlem12 42028 k0004val0 44143 |
| Copyright terms: Public domain | W3C validator |