Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1elunit | Structured version Visualization version GIF version |
Description: One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
1elunit | ⊢ 1 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11068 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0le1 11591 | . 2 ⊢ 0 ≤ 1 | |
3 | 1le1 11696 | . 2 ⊢ 1 ≤ 1 | |
4 | elicc01 13291 | . 2 ⊢ (1 ∈ (0[,]1) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1340 | 1 ⊢ 1 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 class class class wbr 5089 (class class class)co 7329 ℝcr 10963 0cc0 10964 1c1 10965 ≤ cle 11103 [,]cicc 13175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-icc 13179 |
This theorem is referenced by: iccpnfcnv 24205 htpycom 24237 htpyid 24238 htpyco1 24239 htpyco2 24240 htpycc 24241 phtpy01 24246 phtpycom 24249 phtpyid 24250 phtpyco2 24251 phtpycc 24252 reparphti 24258 pco1 24276 pcohtpylem 24280 pcoptcl 24282 pcopt 24283 pcopt2 24284 pcoass 24285 pcorevcl 24286 pcorevlem 24287 pi1xfrf 24314 pi1xfr 24316 pi1xfrcnvlem 24317 pi1xfrcnv 24318 pi1cof 24320 pi1coghm 24322 dvlipcn 25256 leibpi 26190 lgamgulmlem2 26277 ttgcontlem1 27454 axpaschlem 27510 iistmd 32063 xrge0iif1 32099 xrge0iifmhm 32100 cnpconn 33404 pconnconn 33405 txpconn 33406 ptpconn 33407 indispconn 33408 connpconn 33409 txsconnlem 33414 txsconn 33415 cvxpconn 33416 cvxsconn 33417 cvmliftphtlem 33491 cvmlift3lem2 33494 cvmlift3lem4 33496 cvmlift3lem5 33497 cvmlift3lem6 33498 cvmlift3lem9 33501 lcmineqlem12 40295 k0004val0 42074 |
Copyright terms: Public domain | W3C validator |