| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1elunit | Structured version Visualization version GIF version | ||
| Description: One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| 1elunit | ⊢ 1 ∈ (0[,]1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0le1 11640 | . 2 ⊢ 0 ≤ 1 | |
| 3 | 1le1 11745 | . 2 ⊢ 1 ≤ 1 | |
| 4 | elicc01 13366 | . 2 ⊢ (1 ∈ (0[,]1) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 ≤ 1)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1342 | 1 ⊢ 1 ∈ (0[,]1) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-icc 13252 |
| This theorem is referenced by: iccpnfcnv 24870 htpycom 24903 htpyid 24904 htpyco1 24905 htpyco2 24906 htpycc 24907 phtpy01 24912 phtpycom 24915 phtpyid 24916 phtpyco2 24917 phtpycc 24918 reparphti 24924 reparphtiOLD 24925 pco1 24943 pcohtpylem 24947 pcoptcl 24949 pcopt 24950 pcopt2 24951 pcoass 24952 pcorevcl 24953 pcorevlem 24954 pi1xfrf 24981 pi1xfr 24983 pi1xfrcnvlem 24984 pi1xfrcnv 24985 pi1cof 24987 pi1coghm 24989 dvlipcn 25927 leibpi 26880 lgamgulmlem2 26968 ttgcontlem1 28864 axpaschlem 28919 iistmd 33913 xrge0iif1 33949 xrge0iifmhm 33950 cnpconn 35272 pconnconn 35273 txpconn 35274 ptpconn 35275 indispconn 35276 connpconn 35277 txsconnlem 35282 txsconn 35283 cvxpconn 35284 cvxsconn 35285 cvmliftphtlem 35359 cvmlift3lem2 35362 cvmlift3lem4 35364 cvmlift3lem5 35365 cvmlift3lem6 35366 cvmlift3lem9 35369 lcmineqlem12 42079 k0004val0 44193 |
| Copyright terms: Public domain | W3C validator |