![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1elunit | Structured version Visualization version GIF version |
Description: One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
1elunit | ⊢ 1 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11259 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0le1 11784 | . 2 ⊢ 0 ≤ 1 | |
3 | 1le1 11889 | . 2 ⊢ 1 ≤ 1 | |
4 | elicc01 13503 | . 2 ⊢ (1 ∈ (0[,]1) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1340 | 1 ⊢ 1 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 ≤ cle 11294 [,]cicc 13387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-icc 13391 |
This theorem is referenced by: iccpnfcnv 24989 htpycom 25022 htpyid 25023 htpyco1 25024 htpyco2 25025 htpycc 25026 phtpy01 25031 phtpycom 25034 phtpyid 25035 phtpyco2 25036 phtpycc 25037 reparphti 25043 reparphtiOLD 25044 pco1 25062 pcohtpylem 25066 pcoptcl 25068 pcopt 25069 pcopt2 25070 pcoass 25071 pcorevcl 25072 pcorevlem 25073 pi1xfrf 25100 pi1xfr 25102 pi1xfrcnvlem 25103 pi1xfrcnv 25104 pi1cof 25106 pi1coghm 25108 dvlipcn 26048 leibpi 27000 lgamgulmlem2 27088 ttgcontlem1 28914 axpaschlem 28970 iistmd 33863 xrge0iif1 33899 xrge0iifmhm 33900 cnpconn 35215 pconnconn 35216 txpconn 35217 ptpconn 35218 indispconn 35219 connpconn 35220 txsconnlem 35225 txsconn 35226 cvxpconn 35227 cvxsconn 35228 cvmliftphtlem 35302 cvmlift3lem2 35305 cvmlift3lem4 35307 cvmlift3lem5 35308 cvmlift3lem6 35309 cvmlift3lem9 35312 lcmineqlem12 42022 k0004val0 44144 |
Copyright terms: Public domain | W3C validator |