MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irec Structured version   Visualization version   GIF version

Theorem irec 13567
Description: The reciprocal of i. (Contributed by NM, 11-Oct-1999.)
Assertion
Ref Expression
irec (1 / i) = -i

Proof of Theorem irec
StepHypRef Expression
1 ax-icn 10598 . . . 4 i ∈ ℂ
21, 1mulneg2i 11089 . . 3 (i · -i) = -(i · i)
3 ixi 11271 . . . 4 (i · i) = -1
4 ax-1cn 10597 . . . . 5 1 ∈ ℂ
51, 1mulcli 10650 . . . . 5 (i · i) ∈ ℂ
64, 5negcon2i 10971 . . . 4 (1 = -(i · i) ↔ (i · i) = -1)
73, 6mpbir 233 . . 3 1 = -(i · i)
82, 7eqtr4i 2849 . 2 (i · -i) = 1
9 negicn 10889 . . 3 -i ∈ ℂ
10 ine0 11077 . . 3 i ≠ 0
114, 1, 9, 10divmuli 11396 . 2 ((1 / i) = -i ↔ (i · -i) = 1)
128, 11mpbir 233 1 (1 / i) = -i
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7158  1c1 10540  ici 10541   · cmul 10544  -cneg 10873   / cdiv 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300
This theorem is referenced by:  imre  14469  crim  14476  cnpart  14601  sinhval  15509  dvsincos  24580  dvatan  25515  atantayl2  25518  sinh-conventional  44845
  Copyright terms: Public domain W3C validator