MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negicn Structured version   Visualization version   GIF version

Theorem negicn 11465
Description: -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
negicn -i ∈ ℂ

Proof of Theorem negicn
StepHypRef Expression
1 ax-icn 11171 . 2 i ∈ ℂ
2 negcl 11464 . 2 (i ∈ ℂ → -i ∈ ℂ)
31, 2ax-mp 5 1 -i ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cc 11110  ici 11114  -cneg 11449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450  df-neg 11451
This theorem is referenced by:  irec  14169  imcl  15062  absimle  15260  recan  15287  sinf  16071  cosf  16072  tanval2  16080  tanval3  16081  efi4p  16084  sinneg  16093  cosneg  16094  efival  16099  sinhval  16101  coshval  16102  sinadd  16111  cosadd  16112  cphipval2  24982  dvsincos  25722  sincn  26180  coscn  26181  sinperlem  26214  pige3ALT  26253  sineq0  26257  tanregt0  26272  asinlem3a  26599  asinf  26601  asinneg  26615  efiasin  26617  sinasin  26618  asinsinlem  26620  asinsin  26621  asin1  26623  2efiatan  26647  dvatan  26664  atantayl  26666  nvpi  30175  ipval2  30215  4ipval2  30216  ipidsq  30218  dipcj  30222  dip0r  30225  ipasslem10  30347  polid2i  30665  dvasin  36875  areacirclem4  36882  sineq0ALT  44000
  Copyright terms: Public domain W3C validator