MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negicn Structured version   Visualization version   GIF version

Theorem negicn 10602
Description: -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
negicn -i ∈ ℂ

Proof of Theorem negicn
StepHypRef Expression
1 ax-icn 10311 . 2 i ∈ ℂ
2 negcl 10601 . 2 (i ∈ ℂ → -i ∈ ℂ)
31, 2ax-mp 5 1 -i ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2166  cc 10250  ici 10254  -cneg 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-ltxr 10396  df-sub 10587  df-neg 10588
This theorem is referenced by:  irec  13258  imcl  14228  absimle  14426  recan  14453  sinf  15226  cosf  15227  tanval2  15235  tanval3  15236  efi4p  15239  sinneg  15248  cosneg  15249  efival  15254  sinhval  15256  coshval  15257  sinadd  15266  cosadd  15267  cphipval2  23409  dvsincos  24143  sincn  24597  coscn  24598  sinperlem  24632  pige3  24669  sineq0  24673  tanregt0  24685  asinlem3a  25010  asinf  25012  asinneg  25026  efiasin  25028  sinasin  25029  asinsinlem  25031  asinsin  25032  asin1  25034  2efiatan  25058  dvatan  25075  atantayl  25077  nvpi  28077  ipval2  28117  4ipval2  28118  ipidsq  28120  dipcj  28124  dip0r  28127  ipasslem10  28249  polid2i  28569  dvasin  34039  areacirclem4  34046  sineq0ALT  39991
  Copyright terms: Public domain W3C validator