![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negicn | Structured version Visualization version GIF version |
Description: -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.) |
Ref | Expression |
---|---|
negicn | ⊢ -i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11243 | . 2 ⊢ i ∈ ℂ | |
2 | negcl 11536 | . 2 ⊢ (i ∈ ℂ → -i ∈ ℂ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -i ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℂcc 11182 ici 11186 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: irec 14250 imcl 15160 absimle 15358 recan 15385 sinf 16172 cosf 16173 tanval2 16181 tanval3 16182 efi4p 16185 sinneg 16194 cosneg 16195 efival 16200 sinhval 16202 coshval 16203 sinadd 16212 cosadd 16213 cphipval2 25294 dvsincos 26039 sincn 26506 coscn 26507 sinperlem 26540 pige3ALT 26580 sineq0 26584 tanregt0 26599 asinlem3a 26931 asinf 26933 asinneg 26947 efiasin 26949 sinasin 26950 asinsinlem 26952 asinsin 26953 asin1 26955 2efiatan 26979 dvatan 26996 atantayl 26998 nvpi 30699 ipval2 30739 4ipval2 30740 ipidsq 30742 dipcj 30746 dip0r 30749 ipasslem10 30871 polid2i 31189 dvasin 37664 areacirclem4 37671 sineq0ALT 44908 |
Copyright terms: Public domain | W3C validator |