Home | Metamath
Proof Explorer Theorem List (p. 142 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hashgadd 14101 | 𝐺 maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) | ||
Theorem | hashgval2 14102 | A short expression for the 𝐺 function of hashgf1o 13700. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | ||
Theorem | hashdom 14103 | Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | hashdomi 14104 | Non-strict order relation of the ♯ function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝐴 ≼ 𝐵 → (♯‘𝐴) ≤ (♯‘𝐵)) | ||
Theorem | hashsdom 14105 | Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) | ||
Theorem | hashun 14106 | The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | hashun2 14107 | The size of the union of finite sets is less than or equal to the sum of their sizes. (Contributed by Mario Carneiro, 23-Sep-2013.) (Proof shortened by Mario Carneiro, 27-Jul-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | hashun3 14108 | The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴 ∩ 𝐵)))) | ||
Theorem | hashinfxadd 14109 | The extended real addition of the size of an infinite set with the size of an arbitrary set yields plus infinity. (Contributed by Alexander van der Vekens, 20-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (♯‘𝐴) ∉ ℕ0) → ((♯‘𝐴) +𝑒 (♯‘𝐵)) = +∞) | ||
Theorem | hashunx 14110 | The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun 14106. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) +𝑒 (♯‘𝐵))) | ||
Theorem | hashge0 14111 | The cardinality of a set is greater than or equal to zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ (𝐴 ∈ 𝑉 → 0 ≤ (♯‘𝐴)) | ||
Theorem | hashgt0 14112 | The cardinality of a nonempty set is greater than zero. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴)) | ||
Theorem | hashge1 14113 | The cardinality of a nonempty set is greater than or equal to one. (Contributed by Thierry Arnoux, 20-Jun-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 1 ≤ (♯‘𝐴)) | ||
Theorem | 1elfz0hash 14114 | 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴))) | ||
Theorem | hashnn0n0nn 14115 | If a nonnegative integer is the size of a set which contains at least one element, this integer is a positive integer. (Contributed by Alexander van der Vekens, 9-Jan-2018.) |
⊢ (((𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0) ∧ ((♯‘𝑉) = 𝑌 ∧ 𝑁 ∈ 𝑉)) → 𝑌 ∈ ℕ) | ||
Theorem | hashunsng 14116 | The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) | ||
Theorem | hashunsngx 14117 | The size of the union of a set with a disjoint singleton is the extended real addition of the size of the set and 1, analogous to hashunsng 14116. (Contributed by BTernaryTau, 9-Sep-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝐵 ∈ 𝐴 → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) +𝑒 1))) | ||
Theorem | hashunsnggt 14118 | The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑁 ∈ ℕ0) ∧ ¬ 𝐵 ∈ 𝐴) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) < (♯‘(𝐴 ∪ {𝐵})))) | ||
Theorem | hashprg 14119 | The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | ||
Theorem | elprchashprn2 14120 | If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) | ||
Theorem | hashprb 14121 | The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2) | ||
Theorem | hashprdifel 14122 | The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020.) |
⊢ 𝑆 = {𝐴, 𝐵} ⇒ ⊢ ((♯‘𝑆) = 2 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵)) | ||
Theorem | prhash2ex 14123 | There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 14132, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{0, 1}) = 2 | ||
Theorem | hashle00 14124 | If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018.) (Proof shortened by AV, 24-Oct-2021.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) ≤ 0 ↔ 𝑉 = ∅)) | ||
Theorem | hashgt0elex 14125* | If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑥 𝑥 ∈ 𝑉) | ||
Theorem | hashgt0elexb 14126* | The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018.) |
⊢ (𝑉 ∈ 𝑊 → (0 < (♯‘𝑉) ↔ ∃𝑥 𝑥 ∈ 𝑉)) | ||
Theorem | hashp1i 14127 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴 & ⊢ (♯‘𝐴) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 | ||
Theorem | hash1 14128 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘1o) = 1 | ||
Theorem | hash2 14129 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘2o) = 2 | ||
Theorem | hash3 14130 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘3o) = 3 | ||
Theorem | hash4 14131 | Size of a finite ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘4o) = 4 | ||
Theorem | pr0hash2ex 14132 | There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{∅, {∅}}) = 2 | ||
Theorem | hashss 14133 | The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | ||
Theorem | prsshashgt1 14134 | The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ 𝑈) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) | ||
Theorem | hashin 14135 | The size of the intersection of a set and a class is less than or equal to the size of the set. (Contributed by AV, 4-Jan-2021.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘(𝐴 ∩ 𝐵)) ≤ (♯‘𝐴)) | ||
Theorem | hashssdif 14136 | The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) | ||
Theorem | hashdif 14137 | The size of the difference of a finite set and another set is the first set's size minus that of the intersection of both. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘(𝐴 ∩ 𝐵)))) | ||
Theorem | hashdifsn 14138 | The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | ||
Theorem | hashdifpr 14139 | The size of the difference of a finite set and a proper pair of its elements is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) | ||
Theorem | hashsn01 14140 | The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021.) |
⊢ ((♯‘{𝐴}) = 0 ∨ (♯‘{𝐴}) = 1) | ||
Theorem | hashsnle1 14141 | The size of a singleton is less than or equal to 1. (Contributed by AV, 23-Feb-2021.) |
⊢ (♯‘{𝐴}) ≤ 1 | ||
Theorem | hashsnlei 14142 | Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015.) (Proof shortened by AV, 23-Feb-2021.) |
⊢ ({𝐴} ∈ Fin ∧ (♯‘{𝐴}) ≤ 1) | ||
Theorem | hash1snb 14143* | The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | ||
Theorem | euhash1 14144* | The size of a set is 1 in terms of existential uniqueness. (Contributed by Alexander van der Vekens, 8-Feb-2018.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃!𝑎 𝑎 ∈ 𝑉)) | ||
Theorem | hash1n0 14145 | If the size of a set is 1 the set is not empty. (Contributed by AV, 23-Dec-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (♯‘𝐴) = 1) → 𝐴 ≠ ∅) | ||
Theorem | hashgt12el 14146* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) | ||
Theorem | hashgt12el2 14147* | In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉) ∧ 𝐴 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 𝐴 ≠ 𝑏) | ||
Theorem | hashgt23el 14148* | A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.) |
⊢ ((𝑉 ∈ 𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐)) | ||
Theorem | hashunlei 14149 | Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐶 = (𝐴 ∪ 𝐵) & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) & ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝐾 + 𝑀) = 𝑁 ⇒ ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) | ||
Theorem | hashsslei 14150 | Get an upper bound on a concretely specified finite set. Transfer boundedness to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐵 ⊆ 𝐴 & ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝑁) & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑁) | ||
Theorem | hashfz 14151 | Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | ||
Theorem | fzsdom2 14152 | Condition for finite ranges to have a strict dominance relation. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2015.) |
⊢ (((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℤ) ∧ 𝐵 < 𝐶) → (𝐴...𝐵) ≺ (𝐴...𝐶)) | ||
Theorem | hashfzo 14153 | Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | hashfzo0 14154 | Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵) | ||
Theorem | hashfzp1 14155 | Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | hashfz0 14156 | Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.) |
⊢ (𝐵 ∈ ℕ0 → (♯‘(0...𝐵)) = (𝐵 + 1)) | ||
Theorem | hashxplem 14157 | Lemma for hashxp 14158. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ 𝐵 ∈ Fin ⇒ ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | ||
Theorem | hashxp 14158 | The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | ||
Theorem | hashmap 14159 | The size of the set exponential of two finite sets is the exponential of their sizes. (This is the original motivation behind the notation for set exponentiation.) (Contributed by Mario Carneiro, 5-Aug-2014.) (Proof shortened by AV, 18-Jul-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ↑m 𝐵)) = ((♯‘𝐴)↑(♯‘𝐵))) | ||
Theorem | hashpw 14160 | The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) | ||
Theorem | hashfun 14161 | A finite set is a function iff it is equinumerous to its domain. (Contributed by Mario Carneiro, 26-Sep-2013.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ (𝐹 ∈ Fin → (Fun 𝐹 ↔ (♯‘𝐹) = (♯‘dom 𝐹))) | ||
Theorem | hashres 14162 | The number of elements of a finite function restricted to a subset of its domain is equal to the number of elements of that subset. (Contributed by AV, 15-Dec-2021.) |
⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | ||
Theorem | hashreshashfun 14163 | The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) |
⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) | ||
Theorem | hashimarn 14164 | The size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 equals the size of the function 𝐹. (Contributed by Alexander van der Vekens, 4-Feb-2018.) (Proof shortened by AV, 4-May-2021.) |
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 → (♯‘(𝐸 “ ran 𝐹)) = (♯‘𝐹))) | ||
Theorem | hashimarni 14165 | If the size of the image of a one-to-one function 𝐸 under the range of a function 𝐹 which is a one-to-one function into the domain of 𝐸 is a nonnegative integer, the size of the function 𝐹 is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
⊢ ((𝐸:dom 𝐸–1-1→ran 𝐸 ∧ 𝐸 ∈ 𝑉) → ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐸 ∧ 𝑃 = (𝐸 “ ran 𝐹) ∧ (♯‘𝑃) = 𝑁) → (♯‘𝐹) = 𝑁)) | ||
Theorem | resunimafz0 14166 | TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 28609: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) ⇒ ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) | ||
Theorem | fnfz0hash 14167 | The size of a function on a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 25-Jun-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1)) | ||
Theorem | ffz0hash 14168 | The size of a function on a finite set of sequential nonnegative integers equals the upper bound of the sequence increased by 1. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV, 11-Apr-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1)) | ||
Theorem | fnfz0hashnn0 14169 | The size of a function on a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by AV, 10-Apr-2021.) |
⊢ (𝐹 Fn (0...𝑁) → (♯‘𝐹) ∈ ℕ0) | ||
Theorem | ffzo0hash 14170 | The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁) | ||
Theorem | fnfzo0hash 14171 | The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁) | ||
Theorem | fnfzo0hashnn0 14172 | The value of the size function on a half-open range of nonnegative integers is a nonnegative integer. (Contributed by AV, 10-Apr-2021.) |
⊢ (𝐹 Fn (0..^𝑁) → (♯‘𝐹) ∈ ℕ0) | ||
Theorem | hashbclem 14173* | Lemma for hashbc 14174: inductive step. (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑗 ∈ ℤ ((♯‘𝐴)C𝑗) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑗})) & ⊢ (𝜑 → 𝐾 ∈ ℤ) ⇒ ⊢ (𝜑 → ((♯‘(𝐴 ∪ {𝑧}))C𝐾) = (♯‘{𝑥 ∈ 𝒫 (𝐴 ∪ {𝑧}) ∣ (♯‘𝑥) = 𝐾})) | ||
Theorem | hashbc 14174* | The binomial coefficient counts the number of subsets of a finite set of a given size. This is Metamath 100 proof #58 (formula for the number of combinations). (Contributed by Mario Carneiro, 13-Jul-2014.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐾 ∈ ℤ) → ((♯‘𝐴)C𝐾) = (♯‘{𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝐾})) | ||
Theorem | hashfacen 14175* | The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by AV, 7-Aug-2024.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) | ||
Theorem | hashfacenOLD 14176* | Obsolete version of hashfacen 14175 as of 7-Aug-2024. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) | ||
Theorem | hashf1lem1 14177* | Lemma for hashf1 14180. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 14-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ((♯‘𝐴) + 1) ≤ (♯‘𝐵)) & ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) ⇒ ⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ≈ (𝐵 ∖ ran 𝐹)) | ||
Theorem | hashf1lem1OLD 14178* | Obsolete version of hashf1lem1 14177 as of 7-Aug-2024. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ((♯‘𝐴) + 1) ≤ (♯‘𝐵)) & ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) ⇒ ⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ≈ (𝐵 ∖ ran 𝐹)) | ||
Theorem | hashf1lem2 14179* | Lemma for hashf1 14180. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) & ⊢ (𝜑 → ((♯‘𝐴) + 1) ≤ (♯‘𝐵)) ⇒ ⊢ (𝜑 → (♯‘{𝑓 ∣ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵}) = (((♯‘𝐵) − (♯‘𝐴)) · (♯‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐵}))) | ||
Theorem | hashf1 14180* | The permutation number ∣ 𝐴 ∣ ! · ( ∣ 𝐵 ∣ C ∣ 𝐴 ∣ ) = ∣ 𝐵 ∣ ! / ( ∣ 𝐵 ∣ − ∣ 𝐴 ∣ )! counts the number of injections from 𝐴 to 𝐵. (Contributed by Mario Carneiro, 21-Jan-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘{𝑓 ∣ 𝑓:𝐴–1-1→𝐵}) = ((!‘(♯‘𝐴)) · ((♯‘𝐵)C(♯‘𝐴)))) | ||
Theorem | hashfac 14181* | A factorial counts the number of bijections on a finite set. (Contributed by Mario Carneiro, 21-Jan-2015.) (Proof shortened by Mario Carneiro, 17-Apr-2015.) |
⊢ (𝐴 ∈ Fin → (♯‘{𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = (!‘(♯‘𝐴))) | ||
Theorem | leiso 14182 | Two ways to write a strictly increasing function on the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) | ||
Theorem | leisorel 14183 | Version of isorel 7206 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.) |
⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) | ||
Theorem | fz1isolem 14184* | Lemma for fz1iso 14185. (Contributed by Mario Carneiro, 2-Apr-2014.) |
⊢ 𝐺 = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) & ⊢ 𝐵 = (ℕ ∩ (◡ < “ {((♯‘𝐴) + 1)})) & ⊢ 𝐶 = (ω ∩ (◡𝐺‘((♯‘𝐴) + 1))) & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴)) | ||
Theorem | fz1iso 14185* | Any finite ordered set has an order isomorphism to a one-based finite sequence. (Contributed by Mario Carneiro, 2-Apr-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , 𝑅 ((1...(♯‘𝐴)), 𝐴)) | ||
Theorem | ishashinf 14186* | Any set that is not finite contains subsets of arbitrarily large finite cardinality. Cf. isinf 9045. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑥 ∈ 𝒫 𝐴(♯‘𝑥) = 𝑛) | ||
Theorem | seqcoll 14187* | The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 2-Apr-2014.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) & ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) | ||
Theorem | seqcoll2 14188* | The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 13-Dec-2014.) |
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) & ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴)) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴))) | ||
Theorem | phphashd 14189 | Corollary of the Pigeonhole Principle using equality. Equivalent of phpeqd 9007 expressed using the hash function. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | phphashrd 14190 | Corollary of the Pigeonhole Principle using equality. Equivalent of phphashd 14189 with reversed arguments. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | hashprlei 14191 | An unordered pair has at most two elements. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ({𝐴, 𝐵} ∈ Fin ∧ (♯‘{𝐴, 𝐵}) ≤ 2) | ||
Theorem | hash2pr 14192* | A set of size two is an unordered pair. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏}) | ||
Theorem | hash2prde 14193* | A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
⊢ ((𝑉 ∈ 𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) | ||
Theorem | hash2exprb 14194* | A set of size two is an unordered pair if and only if it contains two different elements. (Contributed by Alexander van der Vekens, 14-Jan-2018.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) | ||
Theorem | hash2prb 14195* | A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020.) |
⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) | ||
Theorem | prprrab 14196 | The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020.) |
⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} | ||
Theorem | nehash2 14197 | The cardinality of a set with two distinct elements. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
⊢ (𝜑 → 𝑃 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → 2 ≤ (♯‘𝑃)) | ||
Theorem | hash2prd 14198 | A set of size two is an unordered pair if it contains two different elements. (Contributed by Alexander van der Vekens, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
⊢ ((𝑃 ∈ 𝑉 ∧ (♯‘𝑃) = 2) → ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌) → 𝑃 = {𝑋, 𝑌})) | ||
Theorem | hash2pwpr 14199 | If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.) |
⊢ (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌}) | ||
Theorem | hashle2pr 14200* | A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.) |
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |