| Metamath
Proof Explorer Theorem List (p. 142 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | zsqcl 14101 | Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | ||
| Theorem | qsqcl 14102 | The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | ||
| Theorem | sq11 14103 | The square function is one-to-one for nonnegative reals. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
| Theorem | nn0sq11 14104 | The square function is one-to-one for nonnegative integers. (Contributed by AV, 25-Jun-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
| Theorem | lt2sq 14105 | The square function is increasing on nonnegative reals. (Contributed by NM, 24-Feb-2006.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
| Theorem | le2sq 14106 | The square function is nondecreasing on nonnegative reals. (Contributed by NM, 18-Oct-1999.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | le2sq2 14107 | The square function is nondecreasing on the nonnegative reals. (Contributed by NM, 21-Mar-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵↑2)) | ||
| Theorem | sqge0 14108 | The square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.) |
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | ||
| Theorem | sqge0d 14109 | The square of a real is nonnegative, deduction form. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑2)) | ||
| Theorem | zsqcl2 14110 | The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0) | ||
| Theorem | 0expd 14111 | Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (0↑𝑁) = 0) | ||
| Theorem | exp0d 14112 | Value of a complex number raised to the zeroth power. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑0) = 1) | ||
| Theorem | exp1d 14113 | Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑1) = 𝐴) | ||
| Theorem | expeq0d 14114 | If a positive integer power is zero, then its base is zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐴↑𝑁) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | sqvald 14115 | Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) | ||
| Theorem | sqcld 14116 | Closure of square. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) | ||
| Theorem | sqeq0d 14117 | A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | expcld 14118 | Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
| Theorem | expp1d 14119 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
| Theorem | expaddd 14120 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
| Theorem | expmuld 14121 | Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
| Theorem | sqrecd 14122 | Square of reciprocal is reciprocal of square. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2))) | ||
| Theorem | expclzd 14123 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
| Theorem | expne0d 14124 | A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) | ||
| Theorem | expnegd 14125 | Value of a nonzero complex number raised to the negative of an integer power. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
| Theorem | exprecd 14126 | An integer power of a reciprocal is the reciprocal of the integer power with same exponent. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | ||
| Theorem | expp1zd 14127 | Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
| Theorem | expm1d 14128 | Value of a nonzero complex number raised to an integer power minus one. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | ||
| Theorem | expsubd 14129 | Exponent subtraction law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | ||
| Theorem | sqmuld 14130 | Distribution of squaring over multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | ||
| Theorem | sqdivd 14131 | Distribution of squaring over division. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
| Theorem | expdivd 14132 | Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | ||
| Theorem | mulexpd 14133 | Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
| Theorem | znsqcld 14134 | The square of a nonzero integer is a positive integer. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ≠ 0) ⇒ ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) | ||
| Theorem | reexpcld 14135 | Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | ||
| Theorem | expge0d 14136 | A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) | ||
| Theorem | expge1d 14137 | A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 1 ≤ (𝐴↑𝑁)) | ||
| Theorem | ltexp2a 14138 | Exponent ordering relationship for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) < (𝐴↑𝑁)) | ||
| Theorem | expmordi 14139 | Base ordering relationship for exponentiation of nonnegative reals to a fixed positive integer power. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵) ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) < (𝐵↑𝑁)) | ||
| Theorem | rpexpmord 14140 | Base ordering relationship for exponentiation of positive reals to a fixed positive integer exponent. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴↑𝑁) < (𝐵↑𝑁))) | ||
| Theorem | expcan 14141 | Cancellation law for integer exponentiation of reals. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) | ||
| Theorem | ltexp2 14142 | Strict ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
| Theorem | leexp2 14143 | Ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) | ||
| Theorem | leexp2a 14144 | Weak ordering relationship for exponentiation of a fixed real base greater than or equal to 1 to integer exponents. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
| Theorem | ltexp2r 14145 | The integer powers of a fixed positive real less than 1 decrease as the exponent increases. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐴 < 1) → (𝑀 < 𝑁 ↔ (𝐴↑𝑁) < (𝐴↑𝑀))) | ||
| Theorem | leexp2r 14146 | Weak ordering relationship for exponentiation of a fixed real base in [0, 1] to integer exponents. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
| Theorem | leexp1a 14147 | Weak base ordering relationship for exponentiation of real bases to a fixed nonnegative integer exponent. (Contributed by NM, 18-Dec-2005.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) | ||
| Theorem | leexp1ad 14148 | Weak base ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐵↑𝑁)) | ||
| Theorem | exple1 14149 | A real between 0 and 1 inclusive raised to a nonnegative integer power is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ≤ 1) | ||
| Theorem | expubnd 14150 | An upper bound on 𝐴↑𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴↑𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁))) | ||
| Theorem | sumsqeq0 14151 | The sum of two squres of reals is zero if and only if both reals are zero. (Contributed by NM, 29-Apr-2005.) (Revised by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)) | ||
| Theorem | sqvali 14152 | Value of square. Inference version. (Contributed by NM, 1-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴↑2) = (𝐴 · 𝐴) | ||
| Theorem | sqcli 14153 | Closure of square. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴↑2) ∈ ℂ | ||
| Theorem | sqeq0i 14154 | A complex number is zero iff its square is zero. (Contributed by NM, 2-Oct-1999.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ ((𝐴↑2) = 0 ↔ 𝐴 = 0) | ||
| Theorem | sqrecii 14155 | The square of a reciprocal is the reciprocal of the square. (Contributed by NM, 17-Sep-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ ((1 / 𝐴)↑2) = (1 / (𝐴↑2)) | ||
| Theorem | sqmuli 14156 | Distribution of squaring over multiplication. (Contributed by NM, 3-Sep-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)) | ||
| Theorem | sqdivi 14157 | Distribution of squaring over division. (Contributed by NM, 20-Aug-2001.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)) | ||
| Theorem | resqcli 14158 | Closure of square in reals. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴↑2) ∈ ℝ | ||
| Theorem | sqgt0i 14159 | The square of a nonzero real is positive. (Contributed by NM, 17-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≠ 0 → 0 < (𝐴↑2)) | ||
| Theorem | sqge0i 14160 | The square of a real is nonnegative. (Contributed by NM, 3-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴↑2) | ||
| Theorem | lt2sqi 14161 | The square function on nonnegative reals is increasing. (Contributed by NM, 12-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
| Theorem | le2sqi 14162 | The square function on nonnegative reals is nondecreasing. (Contributed by NM, 12-Sep-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | sq11i 14163 | The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
| Theorem | sq0 14164 | The square of 0 is 0. (Contributed by NM, 6-Jun-2006.) |
| ⊢ (0↑2) = 0 | ||
| Theorem | sq0i 14165 | If a number is zero, then its square is zero. (Contributed by FL, 10-Dec-2006.) |
| ⊢ (𝐴 = 0 → (𝐴↑2) = 0) | ||
| Theorem | sq0id 14166 | If a number is zero, then its square is zero. Deduction form of sq0i 14165. Converse of sqeq0d 14117. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 = 0) ⇒ ⊢ (𝜑 → (𝐴↑2) = 0) | ||
| Theorem | sq1 14167 | The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
| ⊢ (1↑2) = 1 | ||
| Theorem | neg1sqe1 14168 | The square of -1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (-1↑2) = 1 | ||
| Theorem | sq2 14169 | The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
| ⊢ (2↑2) = 4 | ||
| Theorem | sq3 14170 | The square of 3 is 9. (Contributed by NM, 26-Apr-2006.) |
| ⊢ (3↑2) = 9 | ||
| Theorem | sq4e2t8 14171 | The square of 4 is 2 times 8. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (4↑2) = (2 · 8) | ||
| Theorem | cu2 14172 | The cube of 2 is 8. (Contributed by NM, 2-Aug-2004.) |
| ⊢ (2↑3) = 8 | ||
| Theorem | irec 14173 | The reciprocal of i. (Contributed by NM, 11-Oct-1999.) |
| ⊢ (1 / i) = -i | ||
| Theorem | i2 14174 | i squared. (Contributed by NM, 6-May-1999.) |
| ⊢ (i↑2) = -1 | ||
| Theorem | i3 14175 | i cubed. (Contributed by NM, 31-Jan-2007.) |
| ⊢ (i↑3) = -i | ||
| Theorem | i4 14176 | i to the fourth power. (Contributed by NM, 31-Jan-2007.) |
| ⊢ (i↑4) = 1 | ||
| Theorem | nnlesq 14177 | A positive integer is less than or equal to its square. For general integers, see zzlesq 14178. (Contributed by NM, 15-Sep-1999.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁↑2)) | ||
| Theorem | zzlesq 14178 | An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁↑2)) | ||
| Theorem | iexpcyc 14179 | Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 14176. (Contributed by Mario Carneiro, 7-Jul-2014.) |
| ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) | ||
| Theorem | expnass 14180 | A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.) |
| ⊢ ((3↑3)↑3) < (3↑(3↑3)) | ||
| Theorem | sqlecan 14181 | Cancel one factor of a square in a ≤ comparison. Unlike lemul1 12041, the common factor 𝐴 may be zero. (Contributed by NM, 17-Jan-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴 ≤ 𝐵)) | ||
| Theorem | subsq 14182 | Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | ||
| Theorem | subsq2 14183 | Express the difference of the squares of two numbers as a polynomial in the difference of the numbers. (Contributed by NM, 21-Feb-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵)))) | ||
| Theorem | binom2i 14184 | The square of a binomial. (Contributed by NM, 11-Aug-1999.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) | ||
| Theorem | subsqi 14185 | Factor the difference of two squares. (Contributed by NM, 7-Feb-2005.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) | ||
| Theorem | sqeqori 14186 | The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) | ||
| Theorem | subsq0i 14187 | The two solutions to the difference of squares set equal to zero. (Contributed by NM, 25-Apr-2006.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) | ||
| Theorem | sqeqor 14188 | The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by Paul Chapman, 15-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | ||
| Theorem | binom2 14189 | The square of a binomial. (Contributed by FL, 10-Dec-2006.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
| Theorem | binom2d 14190 | Deduction form of binom2 14189. (Contributed by Igor Ieskov, 14-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
| Theorem | binom21 14191 | Special case of binom2 14189 where 𝐵 = 1. (Contributed by Scott Fenton, 11-May-2014.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) | ||
| Theorem | binom2sub 14192 | Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
| Theorem | binom2sub1 14193 | Special case of binom2sub 14192 where 𝐵 = 1. (Contributed by AV, 2-Aug-2021.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) | ||
| Theorem | binom2subi 14194 | Expand the square of a subtraction. (Contributed by Scott Fenton, 13-Jun-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)) | ||
| Theorem | mulbinom2 14195 | The square of a binomial with factor. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2))) | ||
| Theorem | binom3 14196 | The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) | ||
| Theorem | sq01 14197 | If a complex number equals its square, it must be 0 or 1. (Contributed by NM, 6-Jun-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 𝐴 ↔ (𝐴 = 0 ∨ 𝐴 = 1))) | ||
| Theorem | zesq 14198 | An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ)) | ||
| Theorem | nnesq 14199 | A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ((𝑁↑2) / 2) ∈ ℕ)) | ||
| Theorem | crreczi 14200 | Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → (1 / (𝐴 + (i · 𝐵))) = ((𝐴 − (i · 𝐵)) / ((𝐴↑2) + (𝐵↑2)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |