Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldgenpisyslem2 | Structured version Visualization version GIF version |
Description: Lemma for ldgenpisys 32130. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
ldgenpisys.e | ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
ldgenpisys.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
ldgenpisyslem1.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
ldgenpisyslem2.1 | ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Ref | Expression |
---|---|
ldgenpisyslem2 | ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldgenpisys.e | . 2 ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} | |
2 | dynkin.p | . . . . . 6 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
3 | dynkin.l | . . . . . 6 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
4 | dynkin.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
5 | ldgenpisys.1 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
6 | ldgenpisyslem1.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
7 | 2, 3, 4, 1, 5, 6 | ldgenpisyslem1 32127 | . . . . 5 ⊢ (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝐿) |
8 | ldgenpisyslem2.1 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) | |
9 | 7, 8 | jca 512 | . . . 4 ⊢ (𝜑 → ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝐿 ∧ 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸})) |
10 | sseq2 3952 | . . . . 5 ⊢ (𝑡 = {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} → (𝑇 ⊆ 𝑡 ↔ 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸})) | |
11 | 10 | elrab 3626 | . . . 4 ⊢ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ 𝐿 ∧ 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸})) |
12 | 9, 11 | sylibr 233 | . . 3 ⊢ (𝜑 → {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡}) |
13 | intss1 4900 | . . 3 ⊢ ({𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ∈ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} → ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
15 | 1, 14 | eqsstrid 3974 | 1 ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {crab 3070 ∖ cdif 3889 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 ∪ cuni 4845 ∩ cint 4885 Disj wdisj 5044 class class class wbr 5079 ‘cfv 6432 ωcom 7706 ≼ cdom 8714 ficfi 9147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-oi 9247 df-dju 9660 df-card 9698 df-acn 9701 |
This theorem is referenced by: ldgenpisyslem3 32129 ldgenpisys 32130 |
Copyright terms: Public domain | W3C validator |