Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflelimsup Structured version   Visualization version   GIF version

Theorem liminflelimsup 45774
Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 45795 for a counterexample). The inequality can be strict, see liminfltlimsupex 45779. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflelimsup.1 (𝜑𝐹𝑉)
liminflelimsup.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminflelimsup (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Distinct variable group:   𝑗,𝐹,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminflelimsup
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflelimsup.1 . 2 (𝜑𝐹𝑉)
2 liminflelimsup.2 . . 3 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
3 oveq1 7394 . . . . . 6 (𝑘 = 𝑖 → (𝑘[,)+∞) = (𝑖[,)+∞))
43rexeqdv 3300 . . . . 5 (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅))
5 oveq1 7394 . . . . . . . . . 10 (𝑗 = 𝑙 → (𝑗[,)+∞) = (𝑙[,)+∞))
65imaeq2d 6031 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑙[,)+∞)))
76ineq1d 4182 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*))
87neeq1d 2984 . . . . . . 7 (𝑗 = 𝑙 → (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅))
98cbvrexvw 3216 . . . . . 6 (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)
109a1i 11 . . . . 5 (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅))
114, 10bitrd 279 . . . 4 (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅))
1211cbvralvw 3215 . . 3 (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)
132, 12sylib 218 . 2 (𝜑 → ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)
141, 13liminflelimsuplem 45773 1 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  c0 4296   class class class wbr 5107  cima 5641  cfv 6511  (class class class)co 7387  cr 11067  +∞cpnf 11205  *cxr 11207  cle 11209  [,)cico 13308  lim supclsp 15436  lim infclsi 45749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-ico 13312  df-limsup 15437  df-liminf 45750
This theorem is referenced by:  liminfgelimsup  45780  liminflelimsupuz  45783
  Copyright terms: Public domain W3C validator