![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsup | Structured version Visualization version GIF version |
Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 44813 for a counterexample). The inequality can be strict, see liminfltlimsupex 44797. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminflelimsup.1 | β’ (π β πΉ β π) |
liminflelimsup.2 | β’ (π β βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β ) |
Ref | Expression |
---|---|
liminflelimsup | β’ (π β (lim infβπΉ) β€ (lim supβπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflelimsup.1 | . 2 β’ (π β πΉ β π) | |
2 | liminflelimsup.2 | . . 3 β’ (π β βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β ) | |
3 | oveq1 7420 | . . . . . 6 β’ (π = π β (π[,)+β) = (π[,)+β)) | |
4 | 3 | rexeqdv 3324 | . . . . 5 β’ (π = π β (βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β )) |
5 | oveq1 7420 | . . . . . . . . . 10 β’ (π = π β (π[,)+β) = (π[,)+β)) | |
6 | 5 | imaeq2d 6060 | . . . . . . . . 9 β’ (π = π β (πΉ β (π[,)+β)) = (πΉ β (π[,)+β))) |
7 | 6 | ineq1d 4212 | . . . . . . . 8 β’ (π = π β ((πΉ β (π[,)+β)) β© β*) = ((πΉ β (π[,)+β)) β© β*)) |
8 | 7 | neeq1d 2998 | . . . . . . 7 β’ (π = π β (((πΉ β (π[,)+β)) β© β*) β β β ((πΉ β (π[,)+β)) β© β*) β β )) |
9 | 8 | cbvrexvw 3233 | . . . . . 6 β’ (βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β ) |
10 | 9 | a1i 11 | . . . . 5 β’ (π = π β (βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β )) |
11 | 4, 10 | bitrd 278 | . . . 4 β’ (π = π β (βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β )) |
12 | 11 | cbvralvw 3232 | . . 3 β’ (βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β β βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β ) |
13 | 2, 12 | sylib 217 | . 2 β’ (π β βπ β β βπ β (π[,)+β)((πΉ β (π[,)+β)) β© β*) β β ) |
14 | 1, 13 | liminflelimsuplem 44791 | 1 β’ (π β (lim infβπΉ) β€ (lim supβπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1539 β wcel 2104 β wne 2938 βwral 3059 βwrex 3068 β© cin 3948 β c0 4323 class class class wbr 5149 β cima 5680 βcfv 6544 (class class class)co 7413 βcr 11113 +βcpnf 11251 β*cxr 11253 β€ cle 11255 [,)cico 13332 lim supclsp 15420 lim infclsi 44767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-ico 13336 df-limsup 15421 df-liminf 44768 |
This theorem is referenced by: liminfgelimsup 44798 liminflelimsupuz 44801 |
Copyright terms: Public domain | W3C validator |