| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsup | Structured version Visualization version GIF version | ||
| Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 45768 for a counterexample). The inequality can be strict, see liminfltlimsupex 45752. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflelimsup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| liminflelimsup.2 | ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| Ref | Expression |
|---|---|
| liminflelimsup | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflelimsup.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | liminflelimsup.2 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) | |
| 3 | oveq1 7376 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝑘[,)+∞) = (𝑖[,)+∞)) | |
| 4 | 3 | rexeqdv 3297 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 5 | oveq1 7376 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑙 → (𝑗[,)+∞) = (𝑙[,)+∞)) | |
| 6 | 5 | imaeq2d 6020 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑙[,)+∞))) |
| 7 | 6 | ineq1d 4178 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)) |
| 8 | 7 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 9 | 8 | cbvrexvw 3214 | . . . . . 6 ⊢ (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 11 | 4, 10 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 12 | 11 | cbvralvw 3213 | . . 3 ⊢ (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 13 | 2, 12 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 14 | 1, 13 | liminflelimsuplem 45746 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ∅c0 4292 class class class wbr 5102 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 +∞cpnf 11181 ℝ*cxr 11183 ≤ cle 11185 [,)cico 13284 lim supclsp 15412 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-ico 13288 df-limsup 15413 df-liminf 45723 |
| This theorem is referenced by: liminfgelimsup 45753 liminflelimsupuz 45756 |
| Copyright terms: Public domain | W3C validator |