| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflelimsup | Structured version Visualization version GIF version | ||
| Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 45784 for a counterexample). The inequality can be strict, see liminfltlimsupex 45768. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflelimsup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| liminflelimsup.2 | ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
| Ref | Expression |
|---|---|
| liminflelimsup | ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflelimsup.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | liminflelimsup.2 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) | |
| 3 | oveq1 7420 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝑘[,)+∞) = (𝑖[,)+∞)) | |
| 4 | 3 | rexeqdv 3310 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 5 | oveq1 7420 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑙 → (𝑗[,)+∞) = (𝑙[,)+∞)) | |
| 6 | 5 | imaeq2d 6058 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹 “ (𝑗[,)+∞)) = (𝐹 “ (𝑙[,)+∞))) |
| 7 | 6 | ineq1d 4199 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → ((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*)) |
| 8 | 7 | neeq1d 2990 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → (((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 9 | 8 | cbvrexvw 3224 | . . . . . 6 ⊢ (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑖[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 11 | 4, 10 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅)) |
| 12 | 11 | cbvralvw 3223 | . . 3 ⊢ (∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅ ↔ ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 13 | 2, 12 | sylib 218 | . 2 ⊢ (𝜑 → ∀𝑖 ∈ ℝ ∃𝑙 ∈ (𝑖[,)+∞)((𝐹 “ (𝑙[,)+∞)) ∩ ℝ*) ≠ ∅) |
| 14 | 1, 13 | liminflelimsuplem 45762 | 1 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ∩ cin 3930 ∅c0 4313 class class class wbr 5123 “ cima 5668 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 +∞cpnf 11274 ℝ*cxr 11276 ≤ cle 11278 [,)cico 13371 lim supclsp 15489 lim infclsi 45738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-ico 13375 df-limsup 15490 df-liminf 45739 |
| This theorem is referenced by: liminfgelimsup 45769 liminflelimsupuz 45772 |
| Copyright terms: Public domain | W3C validator |