Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfgelimsup Structured version   Visualization version   GIF version

Theorem liminfgelimsup 45797
Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfgelimsup.1 (𝜑𝐹𝑉)
liminfgelimsup.2 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
Assertion
Ref Expression
liminfgelimsup (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
Distinct variable group:   𝑗,𝐹,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem liminfgelimsup
StepHypRef Expression
1 liminfgelimsup.1 . . . . 5 (𝜑𝐹𝑉)
21liminfcld 45785 . . . 4 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
32adantr 480 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ∈ ℝ*)
41limsupcld 45705 . . . 4 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
54adantr 480 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*)
6 liminfgelimsup.2 . . . . 5 (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅)
71, 6liminflelimsup 45791 . . . 4 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
87adantr 480 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
9 simpr 484 . . 3 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
103, 5, 8, 9xrletrid 13197 . 2 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹))
114adantr 480 . . 3 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*)
12 id 22 . . . . 5 ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim inf‘𝐹) = (lim sup‘𝐹))
1312eqcomd 2743 . . . 4 ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim sup‘𝐹) = (lim inf‘𝐹))
1413adantl 481 . . 3 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) = (lim inf‘𝐹))
1511, 14xreqled 45341 . 2 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
1610, 15impbida 801 1 (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cin 3950  c0 4333   class class class wbr 5143  cima 5688  cfv 6561  (class class class)co 7431  cr 11154  +∞cpnf 11292  *cxr 11294  cle 11296  [,)cico 13389  lim supclsp 15506  lim infclsi 45766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-ico 13393  df-limsup 15507  df-liminf 45767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator