![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfgelimsup | Structured version Visualization version GIF version |
Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfgelimsup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
liminfgelimsup.2 | ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
Ref | Expression |
---|---|
liminfgelimsup | ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfgelimsup.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | 1 | liminfcld 45691 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ∈ ℝ*) |
4 | 1 | limsupcld 45611 | . . . 4 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ*) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*) |
6 | liminfgelimsup.2 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) | |
7 | 1, 6 | liminflelimsup 45697 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
10 | 3, 5, 8, 9 | xrletrid 13217 | . 2 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
11 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*) |
12 | id 22 | . . . . 5 ⊢ ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim inf‘𝐹) = (lim sup‘𝐹)) | |
13 | 12 | eqcomd 2746 | . . . 4 ⊢ ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
15 | 11, 14 | xreqled 45245 | . 2 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
16 | 10, 15 | impbida 800 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 ∅c0 4352 class class class wbr 5166 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 [,)cico 13409 lim supclsp 15516 lim infclsi 45672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-ico 13413 df-limsup 15517 df-liminf 45673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |