![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfgelimsup | Structured version Visualization version GIF version |
Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminfgelimsup.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
liminfgelimsup.2 | ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) |
Ref | Expression |
---|---|
liminfgelimsup | ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfgelimsup.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | 1 | liminfcld 45158 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ∈ ℝ*) |
4 | 1 | limsupcld 45078 | . . . 4 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ*) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*) |
6 | liminfgelimsup.2 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) | |
7 | 1, 6 | liminflelimsup 45164 | . . . 4 ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
10 | 3, 5, 8, 9 | xrletrid 13166 | . 2 ⊢ ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
11 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ*) |
12 | id 22 | . . . . 5 ⊢ ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim inf‘𝐹) = (lim sup‘𝐹)) | |
13 | 12 | eqcomd 2734 | . . . 4 ⊢ ((lim inf‘𝐹) = (lim sup‘𝐹) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
15 | 11, 14 | xreqled 44712 | . 2 ⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
16 | 10, 15 | impbida 800 | 1 ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∩ cin 3946 ∅c0 4323 class class class wbr 5148 “ cima 5681 ‘cfv 6548 (class class class)co 7420 ℝcr 11137 +∞cpnf 11275 ℝ*cxr 11277 ≤ cle 11279 [,)cico 13358 lim supclsp 15446 lim infclsi 45139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-ico 13362 df-limsup 15447 df-liminf 45140 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |