| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2lem | Structured version Visualization version GIF version | ||
| Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| climinf2lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climinf2lem.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climinf2lem.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climinf2lem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| climinf2lem.5 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climinf2lem | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinf2lem.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climinf2lem.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climinf2lem.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | climinf2lem.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
| 5 | climinf2lem.5 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
| 6 | 1, 2, 3, 4, 5 | climinf 45591 | . 2 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
| 7 | 3 | frnd 6664 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 8 | 3 | ffnd 6657 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 9 | 2, 1 | uzidd2 45399 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 10 | fnfvelrn 7018 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
| 12 | 11 | ne0d 4295 | . . 3 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| 13 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹) | |
| 14 | fvelrnb 6887 | . . . . . . . . . . . . 13 ⊢ (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) | |
| 15 | 8, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
| 16 | 15 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
| 17 | 13, 16 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
| 18 | 17 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
| 19 | nfv 1914 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘𝜑 | |
| 20 | nfra1 3253 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) | |
| 21 | 19, 20 | nfan 1899 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘(𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
| 22 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑥 ≤ 𝑦 | |
| 23 | rspa 3218 | . . . . . . . . . . . . . 14 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → 𝑥 ≤ (𝐹‘𝑘)) | |
| 24 | simpl 482 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ (𝐹‘𝑘)) | |
| 25 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → (𝐹‘𝑘) = 𝑦) | |
| 26 | 24, 25 | breqtrd 5121 | . . . . . . . . . . . . . . 15 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ 𝑦) |
| 27 | 26 | ex 412 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ≤ (𝐹‘𝑘) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 28 | 23, 27 | syl 17 | . . . . . . . . . . . . 13 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 29 | 28 | ex 412 | . . . . . . . . . . . 12 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
| 30 | 29 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
| 31 | 21, 22, 30 | rexlimd 3236 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 32 | 31 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 33 | 18, 32 | mpd 15 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥 ≤ 𝑦) |
| 34 | 33 | ralrimiva 3121 | . . . . . . 7 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
| 35 | 34 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
| 36 | 35 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
| 37 | 36 | reximdva 3142 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
| 38 | 5, 37 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
| 39 | infxrre 13257 | . . 3 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) | |
| 40 | 7, 12, 38, 39 | syl3anc 1373 | . 2 ⊢ (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) |
| 41 | 6, 40 | breqtrrd 5123 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∅c0 4286 class class class wbr 5095 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 infcinf 9350 ℝcr 11027 1c1 11029 + caddc 11031 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 |
| This theorem is referenced by: climinf2 45692 |
| Copyright terms: Public domain | W3C validator |