Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2lem Structured version   Visualization version   GIF version

Theorem climinf2lem 45735
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2lem.1 𝑍 = (ℤ𝑀)
climinf2lem.2 (𝜑𝑀 ∈ ℤ)
climinf2lem.3 (𝜑𝐹:𝑍⟶ℝ)
climinf2lem.4 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2lem.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2lem (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem climinf2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 climinf2lem.1 . . 3 𝑍 = (ℤ𝑀)
2 climinf2lem.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climinf2lem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2lem.4 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
5 climinf2lem.5 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
61, 2, 3, 4, 5climinf 45635 . 2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
73frnd 6714 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
83ffnd 6707 . . . . 5 (𝜑𝐹 Fn 𝑍)
92, 1uzidd2 45443 . . . . 5 (𝜑𝑀𝑍)
10 fnfvelrn 7070 . . . . 5 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
118, 9, 10syl2anc 584 . . . 4 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1211ne0d 4317 . . 3 (𝜑 → ran 𝐹 ≠ ∅)
13 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
14 fvelrnb 6939 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
158, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1713, 16mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
1817adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
19 nfv 1914 . . . . . . . . . . . 12 𝑘𝜑
20 nfra1 3266 . . . . . . . . . . . 12 𝑘𝑘𝑍 𝑥 ≤ (𝐹𝑘)
2119, 20nfan 1899 . . . . . . . . . . 11 𝑘(𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
22 nfv 1914 . . . . . . . . . . 11 𝑘 𝑥𝑦
23 rspa 3231 . . . . . . . . . . . . . 14 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → 𝑥 ≤ (𝐹𝑘))
24 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥 ≤ (𝐹𝑘))
25 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → (𝐹𝑘) = 𝑦)
2624, 25breqtrd 5145 . . . . . . . . . . . . . . 15 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥𝑦)
2726ex 412 . . . . . . . . . . . . . 14 (𝑥 ≤ (𝐹𝑘) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2823, 27syl 17 . . . . . . . . . . . . 13 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2928ex 412 . . . . . . . . . . . 12 (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3029adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3121, 22, 30rexlimd 3249 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3318, 32mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
3433ralrimiva 3132 . . . . . . 7 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3534adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3635ex 412 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
3736reximdva 3153 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
385, 37mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
39 infxrre 13353 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
407, 12, 38, 39syl3anc 1373 . 2 (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
416, 40breqtrrd 5147 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926  c0 4308   class class class wbr 5119  ran crn 5655   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  infcinf 9453  cr 11128  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cle 11270  cz 12588  cuz 12852  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504
This theorem is referenced by:  climinf2  45736
  Copyright terms: Public domain W3C validator