Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2lem Structured version   Visualization version   GIF version

Theorem climinf2lem 42335
 Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2lem.1 𝑍 = (ℤ𝑀)
climinf2lem.2 (𝜑𝑀 ∈ ℤ)
climinf2lem.3 (𝜑𝐹:𝑍⟶ℝ)
climinf2lem.4 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2lem.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2lem (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem climinf2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 climinf2lem.1 . . 3 𝑍 = (ℤ𝑀)
2 climinf2lem.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climinf2lem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2lem.4 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
5 climinf2lem.5 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
61, 2, 3, 4, 5climinf 42235 . 2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
73frnd 6498 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
83ffnd 6492 . . . . 5 (𝜑𝐹 Fn 𝑍)
92, 1uzidd2 42040 . . . . 5 (𝜑𝑀𝑍)
10 fnfvelrn 6829 . . . . 5 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
118, 9, 10syl2anc 587 . . . 4 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1211ne0d 4254 . . 3 (𝜑 → ran 𝐹 ≠ ∅)
13 simpr 488 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
14 fvelrnb 6705 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
158, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1615adantr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1713, 16mpbid 235 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
1817adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
19 nfv 1915 . . . . . . . . . . . 12 𝑘𝜑
20 nfra1 3186 . . . . . . . . . . . 12 𝑘𝑘𝑍 𝑥 ≤ (𝐹𝑘)
2119, 20nfan 1900 . . . . . . . . . . 11 𝑘(𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
22 nfv 1915 . . . . . . . . . . 11 𝑘 𝑥𝑦
23 rspa 3174 . . . . . . . . . . . . . 14 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → 𝑥 ≤ (𝐹𝑘))
24 simpl 486 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥 ≤ (𝐹𝑘))
25 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → (𝐹𝑘) = 𝑦)
2624, 25breqtrd 5059 . . . . . . . . . . . . . . 15 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥𝑦)
2726ex 416 . . . . . . . . . . . . . 14 (𝑥 ≤ (𝐹𝑘) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2823, 27syl 17 . . . . . . . . . . . . 13 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2928ex 416 . . . . . . . . . . . 12 (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3029adantl 485 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3121, 22, 30rexlimd 3279 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3231adantr 484 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3318, 32mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
3433ralrimiva 3152 . . . . . . 7 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3534adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3635ex 416 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
3736reximdva 3236 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
385, 37mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
39 infxrre 12721 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
407, 12, 38, 39syl3anc 1368 . 2 (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
416, 40breqtrrd 5061 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033  ran crn 5524   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  infcinf 8893  ℝcr 10529  1c1 10531   + caddc 10533  ℝ*cxr 10667   < clt 10668   ≤ cle 10669  ℤcz 11973  ℤ≥cuz 12235   ⇝ cli 14836 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840 This theorem is referenced by:  climinf2  42336
 Copyright terms: Public domain W3C validator