![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2lem | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf2lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf2lem.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf2lem.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf2lem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf2lem.5 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinf2lem | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf2lem.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinf2lem.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinf2lem.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinf2lem.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
5 | climinf2lem.5 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
6 | 1, 2, 3, 4, 5 | climinf 45132 | . 2 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
7 | 3 | frnd 6731 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
8 | 3 | ffnd 6724 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
9 | 2, 1 | uzidd2 44936 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
10 | fnfvelrn 7089 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) | |
11 | 8, 9, 10 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
12 | 11 | ne0d 4335 | . . 3 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
13 | simpr 483 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹) | |
14 | fvelrnb 6958 | . . . . . . . . . . . . 13 ⊢ (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) | |
15 | 8, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
16 | 15 | adantr 479 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
17 | 13, 16 | mpbid 231 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
18 | 17 | adantlr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
19 | nfv 1909 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘𝜑 | |
20 | nfra1 3271 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) | |
21 | 19, 20 | nfan 1894 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘(𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
22 | nfv 1909 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑥 ≤ 𝑦 | |
23 | rspa 3235 | . . . . . . . . . . . . . 14 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → 𝑥 ≤ (𝐹‘𝑘)) | |
24 | simpl 481 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ (𝐹‘𝑘)) | |
25 | simpr 483 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → (𝐹‘𝑘) = 𝑦) | |
26 | 24, 25 | breqtrd 5175 | . . . . . . . . . . . . . . 15 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ 𝑦) |
27 | 26 | ex 411 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ≤ (𝐹‘𝑘) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
28 | 23, 27 | syl 17 | . . . . . . . . . . . . 13 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
29 | 28 | ex 411 | . . . . . . . . . . . 12 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
30 | 29 | adantl 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
31 | 21, 22, 30 | rexlimd 3253 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
32 | 31 | adantr 479 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
33 | 18, 32 | mpd 15 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥 ≤ 𝑦) |
34 | 33 | ralrimiva 3135 | . . . . . . 7 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
35 | 34 | adantlr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
36 | 35 | ex 411 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
37 | 36 | reximdva 3157 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
38 | 5, 37 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
39 | infxrre 13350 | . . 3 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) | |
40 | 7, 12, 38, 39 | syl3anc 1368 | . 2 ⊢ (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) |
41 | 6, 40 | breqtrrd 5177 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ∃wrex 3059 ⊆ wss 3944 ∅c0 4322 class class class wbr 5149 ran crn 5679 Fn wfn 6544 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 infcinf 9466 ℝcr 11139 1c1 11141 + caddc 11143 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 ℤcz 12591 ℤ≥cuz 12855 ⇝ cli 15464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 |
This theorem is referenced by: climinf2 45233 |
Copyright terms: Public domain | W3C validator |