Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2lem Structured version   Visualization version   GIF version

Theorem climinf2lem 45627
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2lem.1 𝑍 = (ℤ𝑀)
climinf2lem.2 (𝜑𝑀 ∈ ℤ)
climinf2lem.3 (𝜑𝐹:𝑍⟶ℝ)
climinf2lem.4 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf2lem.5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
Assertion
Ref Expression
climinf2lem (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝑍,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem climinf2lem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 climinf2lem.1 . . 3 𝑍 = (ℤ𝑀)
2 climinf2lem.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climinf2lem.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 climinf2lem.4 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
5 climinf2lem.5 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
61, 2, 3, 4, 5climinf 45527 . 2 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
73frnd 6755 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
83ffnd 6748 . . . . 5 (𝜑𝐹 Fn 𝑍)
92, 1uzidd2 45331 . . . . 5 (𝜑𝑀𝑍)
10 fnfvelrn 7114 . . . . 5 ((𝐹 Fn 𝑍𝑀𝑍) → (𝐹𝑀) ∈ ran 𝐹)
118, 9, 10syl2anc 583 . . . 4 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
1211ne0d 4365 . . 3 (𝜑 → ran 𝐹 ≠ ∅)
13 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
14 fvelrnb 6982 . . . . . . . . . . . . 13 (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
158, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘𝑍 (𝐹𝑘) = 𝑦))
1713, 16mpbid 232 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
1817adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘𝑍 (𝐹𝑘) = 𝑦)
19 nfv 1913 . . . . . . . . . . . 12 𝑘𝜑
20 nfra1 3290 . . . . . . . . . . . 12 𝑘𝑘𝑍 𝑥 ≤ (𝐹𝑘)
2119, 20nfan 1898 . . . . . . . . . . 11 𝑘(𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))
22 nfv 1913 . . . . . . . . . . 11 𝑘 𝑥𝑦
23 rspa 3254 . . . . . . . . . . . . . 14 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → 𝑥 ≤ (𝐹𝑘))
24 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥 ≤ (𝐹𝑘))
25 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → (𝐹𝑘) = 𝑦)
2624, 25breqtrd 5192 . . . . . . . . . . . . . . 15 ((𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) = 𝑦) → 𝑥𝑦)
2726ex 412 . . . . . . . . . . . . . 14 (𝑥 ≤ (𝐹𝑘) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2823, 27syl 17 . . . . . . . . . . . . 13 ((∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) ∧ 𝑘𝑍) → ((𝐹𝑘) = 𝑦𝑥𝑦))
2928ex 412 . . . . . . . . . . . 12 (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3029adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (𝑘𝑍 → ((𝐹𝑘) = 𝑦𝑥𝑦)))
3121, 22, 30rexlimd 3272 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘𝑍 (𝐹𝑘) = 𝑦𝑥𝑦))
3318, 32mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
3433ralrimiva 3152 . . . . . . 7 ((𝜑 ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3534adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
3635ex 412 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
3736reximdva 3174 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
385, 37mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
39 infxrre 13398 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
407, 12, 38, 39syl3anc 1371 . 2 (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < ))
416, 40breqtrrd 5194 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  climinf2  45628
  Copyright terms: Public domain W3C validator