![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2lem | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf2lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf2lem.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf2lem.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf2lem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf2lem.5 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinf2lem | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf2lem.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinf2lem.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinf2lem.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinf2lem.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
5 | climinf2lem.5 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
6 | 1, 2, 3, 4, 5 | climinf 41264 | . 2 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
7 | 3 | frnd 6345 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
8 | 3 | ffnd 6339 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
9 | 2, 1 | uzidd2 41067 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
10 | fnfvelrn 6667 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) | |
11 | 8, 9, 10 | syl2anc 576 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
12 | 11 | ne0d 4182 | . . 3 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
13 | simpr 477 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹) | |
14 | fvelrnb 6550 | . . . . . . . . . . . . 13 ⊢ (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) | |
15 | 8, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
16 | 15 | adantr 473 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
17 | 13, 16 | mpbid 224 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
18 | 17 | adantlr 702 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
19 | nfv 1873 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘𝜑 | |
20 | nfra1 3163 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) | |
21 | 19, 20 | nfan 1862 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘(𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
22 | nfv 1873 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑥 ≤ 𝑦 | |
23 | rspa 3150 | . . . . . . . . . . . . . 14 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → 𝑥 ≤ (𝐹‘𝑘)) | |
24 | simpl 475 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ (𝐹‘𝑘)) | |
25 | simpr 477 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → (𝐹‘𝑘) = 𝑦) | |
26 | 24, 25 | breqtrd 4949 | . . . . . . . . . . . . . . 15 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ 𝑦) |
27 | 26 | ex 405 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ≤ (𝐹‘𝑘) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
28 | 23, 27 | syl 17 | . . . . . . . . . . . . 13 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
29 | 28 | ex 405 | . . . . . . . . . . . 12 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
30 | 29 | adantl 474 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
31 | 21, 22, 30 | rexlimd 3254 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
32 | 31 | adantr 473 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
33 | 18, 32 | mpd 15 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥 ≤ 𝑦) |
34 | 33 | ralrimiva 3126 | . . . . . . 7 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
35 | 34 | adantlr 702 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
36 | 35 | ex 405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
37 | 36 | reximdva 3213 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
38 | 5, 37 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
39 | infxrre 12538 | . . 3 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) | |
40 | 7, 12, 38, 39 | syl3anc 1351 | . 2 ⊢ (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) |
41 | 6, 40 | breqtrrd 4951 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∀wral 3082 ∃wrex 3083 ⊆ wss 3825 ∅c0 4173 class class class wbr 4923 ran crn 5401 Fn wfn 6177 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 infcinf 8692 ℝcr 10326 1c1 10328 + caddc 10330 ℝ*cxr 10465 < clt 10466 ≤ cle 10467 ℤcz 11786 ℤ≥cuz 12051 ⇝ cli 14692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-rp 12198 df-fz 12702 df-seq 13178 df-exp 13238 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-clim 14696 |
This theorem is referenced by: climinf2 41365 |
Copyright terms: Public domain | W3C validator |