Step | Hyp | Ref
| Expression |
1 | | climinf2lem.1 |
. . 3
β’ π =
(β€β₯βπ) |
2 | | climinf2lem.2 |
. . 3
β’ (π β π β β€) |
3 | | climinf2lem.3 |
. . 3
β’ (π β πΉ:πβΆβ) |
4 | | climinf2lem.4 |
. . 3
β’ ((π β§ π β π) β (πΉβ(π + 1)) β€ (πΉβπ)) |
5 | | climinf2lem.5 |
. . 3
β’ (π β βπ₯ β β βπ β π π₯ β€ (πΉβπ)) |
6 | 1, 2, 3, 4, 5 | climinf 44620 |
. 2
β’ (π β πΉ β inf(ran πΉ, β, < )) |
7 | 3 | frnd 6724 |
. . 3
β’ (π β ran πΉ β β) |
8 | 3 | ffnd 6717 |
. . . . 5
β’ (π β πΉ Fn π) |
9 | 2, 1 | uzidd2 44424 |
. . . . 5
β’ (π β π β π) |
10 | | fnfvelrn 7081 |
. . . . 5
β’ ((πΉ Fn π β§ π β π) β (πΉβπ) β ran πΉ) |
11 | 8, 9, 10 | syl2anc 582 |
. . . 4
β’ (π β (πΉβπ) β ran πΉ) |
12 | 11 | ne0d 4334 |
. . 3
β’ (π β ran πΉ β β
) |
13 | | simpr 483 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β ran πΉ) β π¦ β ran πΉ) |
14 | | fvelrnb 6951 |
. . . . . . . . . . . . 13
β’ (πΉ Fn π β (π¦ β ran πΉ β βπ β π (πΉβπ) = π¦)) |
15 | 8, 14 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (π¦ β ran πΉ β βπ β π (πΉβπ) = π¦)) |
16 | 15 | adantr 479 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β ran πΉ) β (π¦ β ran πΉ β βπ β π (πΉβπ) = π¦)) |
17 | 13, 16 | mpbid 231 |
. . . . . . . . . 10
β’ ((π β§ π¦ β ran πΉ) β βπ β π (πΉβπ) = π¦) |
18 | 17 | adantlr 711 |
. . . . . . . . 9
β’ (((π β§ βπ β π π₯ β€ (πΉβπ)) β§ π¦ β ran πΉ) β βπ β π (πΉβπ) = π¦) |
19 | | nfv 1915 |
. . . . . . . . . . . 12
β’
β²ππ |
20 | | nfra1 3279 |
. . . . . . . . . . . 12
β’
β²πβπ β π π₯ β€ (πΉβπ) |
21 | 19, 20 | nfan 1900 |
. . . . . . . . . . 11
β’
β²π(π β§ βπ β π π₯ β€ (πΉβπ)) |
22 | | nfv 1915 |
. . . . . . . . . . 11
β’
β²π π₯ β€ π¦ |
23 | | rspa 3243 |
. . . . . . . . . . . . . 14
β’
((βπ β
π π₯ β€ (πΉβπ) β§ π β π) β π₯ β€ (πΉβπ)) |
24 | | simpl 481 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β€ (πΉβπ) β§ (πΉβπ) = π¦) β π₯ β€ (πΉβπ)) |
25 | | simpr 483 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β€ (πΉβπ) β§ (πΉβπ) = π¦) β (πΉβπ) = π¦) |
26 | 24, 25 | breqtrd 5173 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β€ (πΉβπ) β§ (πΉβπ) = π¦) β π₯ β€ π¦) |
27 | 26 | ex 411 |
. . . . . . . . . . . . . 14
β’ (π₯ β€ (πΉβπ) β ((πΉβπ) = π¦ β π₯ β€ π¦)) |
28 | 23, 27 | syl 17 |
. . . . . . . . . . . . 13
β’
((βπ β
π π₯ β€ (πΉβπ) β§ π β π) β ((πΉβπ) = π¦ β π₯ β€ π¦)) |
29 | 28 | ex 411 |
. . . . . . . . . . . 12
β’
(βπ β
π π₯ β€ (πΉβπ) β (π β π β ((πΉβπ) = π¦ β π₯ β€ π¦))) |
30 | 29 | adantl 480 |
. . . . . . . . . . 11
β’ ((π β§ βπ β π π₯ β€ (πΉβπ)) β (π β π β ((πΉβπ) = π¦ β π₯ β€ π¦))) |
31 | 21, 22, 30 | rexlimd 3261 |
. . . . . . . . . 10
β’ ((π β§ βπ β π π₯ β€ (πΉβπ)) β (βπ β π (πΉβπ) = π¦ β π₯ β€ π¦)) |
32 | 31 | adantr 479 |
. . . . . . . . 9
β’ (((π β§ βπ β π π₯ β€ (πΉβπ)) β§ π¦ β ran πΉ) β (βπ β π (πΉβπ) = π¦ β π₯ β€ π¦)) |
33 | 18, 32 | mpd 15 |
. . . . . . . 8
β’ (((π β§ βπ β π π₯ β€ (πΉβπ)) β§ π¦ β ran πΉ) β π₯ β€ π¦) |
34 | 33 | ralrimiva 3144 |
. . . . . . 7
β’ ((π β§ βπ β π π₯ β€ (πΉβπ)) β βπ¦ β ran πΉ π₯ β€ π¦) |
35 | 34 | adantlr 711 |
. . . . . 6
β’ (((π β§ π₯ β β) β§ βπ β π π₯ β€ (πΉβπ)) β βπ¦ β ran πΉ π₯ β€ π¦) |
36 | 35 | ex 411 |
. . . . 5
β’ ((π β§ π₯ β β) β (βπ β π π₯ β€ (πΉβπ) β βπ¦ β ran πΉ π₯ β€ π¦)) |
37 | 36 | reximdva 3166 |
. . . 4
β’ (π β (βπ₯ β β βπ β π π₯ β€ (πΉβπ) β βπ₯ β β βπ¦ β ran πΉ π₯ β€ π¦)) |
38 | 5, 37 | mpd 15 |
. . 3
β’ (π β βπ₯ β β βπ¦ β ran πΉ π₯ β€ π¦) |
39 | | infxrre 13319 |
. . 3
β’ ((ran
πΉ β β β§ ran
πΉ β β
β§
βπ₯ β β
βπ¦ β ran πΉ π₯ β€ π¦) β inf(ran πΉ, β*, < ) = inf(ran
πΉ, β, <
)) |
40 | 7, 12, 38, 39 | syl3anc 1369 |
. 2
β’ (π β inf(ran πΉ, β*, < ) = inf(ran
πΉ, β, <
)) |
41 | 6, 40 | breqtrrd 5175 |
1
β’ (π β πΉ β inf(ran πΉ, β*, <
)) |