| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf2lem | Structured version Visualization version GIF version | ||
| Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| climinf2lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climinf2lem.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climinf2lem.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climinf2lem.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| climinf2lem.5 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climinf2lem | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinf2lem.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climinf2lem.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climinf2lem.3 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | climinf2lem.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
| 5 | climinf2lem.5 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
| 6 | 1, 2, 3, 4, 5 | climinf 45635 | . 2 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
| 7 | 3 | frnd 6714 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 8 | 3 | ffnd 6707 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 9 | 2, 1 | uzidd2 45443 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 10 | fnfvelrn 7070 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍) → (𝐹‘𝑀) ∈ ran 𝐹) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ran 𝐹) |
| 12 | 11 | ne0d 4317 | . . 3 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| 13 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹) | |
| 14 | fvelrnb 6939 | . . . . . . . . . . . . 13 ⊢ (𝐹 Fn 𝑍 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) | |
| 15 | 8, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
| 16 | 15 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦)) |
| 17 | 13, 16 | mpbid 232 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
| 18 | 17 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦) |
| 19 | nfv 1914 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘𝜑 | |
| 20 | nfra1 3266 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) | |
| 21 | 19, 20 | nfan 1899 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘(𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
| 22 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑥 ≤ 𝑦 | |
| 23 | rspa 3231 | . . . . . . . . . . . . . 14 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → 𝑥 ≤ (𝐹‘𝑘)) | |
| 24 | simpl 482 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ (𝐹‘𝑘)) | |
| 25 | simpr 484 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → (𝐹‘𝑘) = 𝑦) | |
| 26 | 24, 25 | breqtrd 5145 | . . . . . . . . . . . . . . 15 ⊢ ((𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) = 𝑦) → 𝑥 ≤ 𝑦) |
| 27 | 26 | ex 412 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ≤ (𝐹‘𝑘) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 28 | 23, 27 | syl 17 | . . . . . . . . . . . . 13 ⊢ ((∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 29 | 28 | ex 412 | . . . . . . . . . . . 12 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
| 30 | 29 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (𝑘 ∈ 𝑍 → ((𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦))) |
| 31 | 21, 22, 30 | rexlimd 3249 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 32 | 31 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑘 ∈ 𝑍 (𝐹‘𝑘) = 𝑦 → 𝑥 ≤ 𝑦)) |
| 33 | 18, 32 | mpd 15 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥 ≤ 𝑦) |
| 34 | 33 | ralrimiva 3132 | . . . . . . 7 ⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
| 35 | 34 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
| 36 | 35 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
| 37 | 36 | reximdva 3153 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦)) |
| 38 | 5, 37 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) |
| 39 | infxrre 13353 | . . 3 ⊢ ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦) → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) | |
| 40 | 7, 12, 38, 39 | syl3anc 1373 | . 2 ⊢ (𝜑 → inf(ran 𝐹, ℝ*, < ) = inf(ran 𝐹, ℝ, < )) |
| 41 | 6, 40 | breqtrrd 5147 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 ran crn 5655 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 infcinf 9453 ℝcr 11128 1c1 11130 + caddc 11132 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 ℤcz 12588 ℤ≥cuz 12852 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 |
| This theorem is referenced by: climinf2 45736 |
| Copyright terms: Public domain | W3C validator |