MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrss Structured version   Visualization version   GIF version

Theorem supxrss 13260
Description: Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
supxrss ((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))

Proof of Theorem supxrss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝐵 ⊆ ℝ*)
2 simpl 484 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴𝐵)
32sselda 3948 . . . 4 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥𝐵)
4 supxrub 13252 . . . 4 ((𝐵 ⊆ ℝ*𝑥𝐵) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
51, 3, 4syl2anc 585 . . 3 (((𝐴𝐵𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
65ralrimiva 3140 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))
7 sstr 3956 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
8 supxrcl 13243 . . . 4 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
98adantl 483 . . 3 ((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
10 supxrleub 13254 . . 3 ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
117, 9, 10syl2anc 585 . 2 ((𝐴𝐵𝐵 ⊆ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
126, 11mpbird 257 1 ((𝐴𝐵𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wral 3061  wss 3914   class class class wbr 5109  supcsup 9384  *cxr 11196   < clt 11197  cle 11198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396
This theorem is referenced by:  deg1mul3le  25504  ioossioobi  43845  limsupres  44036  supcnvlimsup  44071  liminfval2  44099  liminflelimsuplem  44106  sge0less  44723  sge0reuz  44778  smflimsuplem4  45154
  Copyright terms: Public domain W3C validator