|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrss1 | Structured version Visualization version GIF version | ||
| Description: In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.) | 
| Ref | Expression | 
|---|---|
| idlsrgmulrss1.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) | 
| idlsrgmulrss1.2 | ⊢ 𝐵 = (LIdeal‘𝑅) | 
| idlsrgmulrss1.3 | ⊢ ⊗ = (.r‘𝑆) | 
| idlsrgmulrss1.4 | ⊢ · = (.r‘𝑅) | 
| idlsrgmulrss1.5 | ⊢ (𝜑 → 𝑅 ∈ CRing) | 
| idlsrgmulrss1.6 | ⊢ (𝜑 → 𝐼 ∈ 𝐵) | 
| idlsrgmulrss1.7 | ⊢ (𝜑 → 𝐽 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| idlsrgmulrss1 | ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idlsrgmulrss1.1 | . . 3 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
| 2 | idlsrgmulrss1.2 | . . 3 ⊢ 𝐵 = (LIdeal‘𝑅) | |
| 3 | idlsrgmulrss1.3 | . . 3 ⊢ ⊗ = (.r‘𝑆) | |
| 4 | eqid 2736 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | eqid 2736 | . . 3 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 6 | idlsrgmulrss1.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | idlsrgmulrss1.6 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 8 | idlsrgmulrss1.7 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | idlsrgmulrval 33538 | . 2 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) = ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽))) | 
| 10 | crngring 20243 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 11 | rlmlmod 21211 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 12 | 6, 10, 11 | 3syl 18 | . . . 4 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) | 
| 13 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 14 | 13, 2 | lidlss 21223 | . . . . 5 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ⊆ (Base‘𝑅)) | 
| 15 | 7, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) | 
| 16 | 13, 2 | lidlss 21223 | . . . . . 6 ⊢ (𝐽 ∈ 𝐵 → 𝐽 ⊆ (Base‘𝑅)) | 
| 17 | 8, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ (Base‘𝑅)) | 
| 18 | 7, 2 | eleqtrdi 2850 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | 
| 19 | 13, 4, 5, 6, 17, 18 | ringlsmss1 33425 | . . . 4 ⊢ (𝜑 → (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐼) | 
| 20 | rlmbas 21201 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
| 21 | rspval 21222 | . . . . 5 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
| 22 | 20, 21 | lspss 20983 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ⊆ (Base‘𝑅) ∧ (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐼) → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐼)) | 
| 23 | 12, 15, 19, 22 | syl3anc 1372 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐼)) | 
| 24 | 6, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 25 | eqid 2736 | . . . . 5 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 26 | 25, 2 | rspidlid 33404 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐵) → ((RSpan‘𝑅)‘𝐼) = 𝐼) | 
| 27 | 24, 7, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((RSpan‘𝑅)‘𝐼) = 𝐼) | 
| 28 | 23, 27 | sseqtrd 4019 | . 2 ⊢ (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ 𝐼) | 
| 29 | 9, 28 | eqsstrd 4017 | 1 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 .rcmulr 17299 LSSumclsm 19653 mulGrpcmgp 20138 Ringcrg 20231 CRingccrg 20232 LModclmod 20859 ringLModcrglmod 21172 LIdealclidl 21217 RSpancrsp 21218 IDLsrgcidlsrg 33529 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-lsm 19655 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-sra 21173 df-rgmod 21174 df-lidl 21219 df-rsp 21220 df-idlsrg 33530 | 
| This theorem is referenced by: idlsrgmulrssin 33542 zarclsun 33870 | 
| Copyright terms: Public domain | W3C validator |