Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgmulrss1 Structured version   Visualization version   GIF version

Theorem idlsrgmulrss1 33531
Description: In a commutative ring, the product of two ideals is a subset of the first one. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
idlsrgmulrss1.1 𝑆 = (IDLsrg‘𝑅)
idlsrgmulrss1.2 𝐵 = (LIdeal‘𝑅)
idlsrgmulrss1.3 = (.r𝑆)
idlsrgmulrss1.4 · = (.r𝑅)
idlsrgmulrss1.5 (𝜑𝑅 ∈ CRing)
idlsrgmulrss1.6 (𝜑𝐼𝐵)
idlsrgmulrss1.7 (𝜑𝐽𝐵)
Assertion
Ref Expression
idlsrgmulrss1 (𝜑 → (𝐼 𝐽) ⊆ 𝐼)

Proof of Theorem idlsrgmulrss1
StepHypRef Expression
1 idlsrgmulrss1.1 . . 3 𝑆 = (IDLsrg‘𝑅)
2 idlsrgmulrss1.2 . . 3 𝐵 = (LIdeal‘𝑅)
3 idlsrgmulrss1.3 . . 3 = (.r𝑆)
4 eqid 2736 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
5 eqid 2736 . . 3 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
6 idlsrgmulrss1.5 . . 3 (𝜑𝑅 ∈ CRing)
7 idlsrgmulrss1.6 . . 3 (𝜑𝐼𝐵)
8 idlsrgmulrss1.7 . . 3 (𝜑𝐽𝐵)
91, 2, 3, 4, 5, 6, 7, 8idlsrgmulrval 33529 . 2 (𝜑 → (𝐼 𝐽) = ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)))
10 crngring 20210 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
11 rlmlmod 21166 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
126, 10, 113syl 18 . . . 4 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
13 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1413, 2lidlss 21178 . . . . 5 (𝐼𝐵𝐼 ⊆ (Base‘𝑅))
157, 14syl 17 . . . 4 (𝜑𝐼 ⊆ (Base‘𝑅))
1613, 2lidlss 21178 . . . . . 6 (𝐽𝐵𝐽 ⊆ (Base‘𝑅))
178, 16syl 17 . . . . 5 (𝜑𝐽 ⊆ (Base‘𝑅))
187, 2eleqtrdi 2845 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
1913, 4, 5, 6, 17, 18ringlsmss1 33416 . . . 4 (𝜑 → (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐼)
20 rlmbas 21156 . . . . 5 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
21 rspval 21177 . . . . 5 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
2220, 21lspss 20946 . . . 4 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ⊆ (Base‘𝑅) ∧ (𝐼(LSSum‘(mulGrp‘𝑅))𝐽) ⊆ 𝐼) → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐼))
2312, 15, 19, 22syl3anc 1373 . . 3 (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ ((RSpan‘𝑅)‘𝐼))
246, 10syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
25 eqid 2736 . . . . 5 (RSpan‘𝑅) = (RSpan‘𝑅)
2625, 2rspidlid 33395 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → ((RSpan‘𝑅)‘𝐼) = 𝐼)
2724, 7, 26syl2anc 584 . . 3 (𝜑 → ((RSpan‘𝑅)‘𝐼) = 𝐼)
2823, 27sseqtrd 4000 . 2 (𝜑 → ((RSpan‘𝑅)‘(𝐼(LSSum‘(mulGrp‘𝑅))𝐽)) ⊆ 𝐼)
299, 28eqsstrd 3998 1 (𝜑 → (𝐼 𝐽) ⊆ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  LSSumclsm 19620  mulGrpcmgp 20105  Ringcrg 20198  CRingccrg 20199  LModclmod 20822  ringLModcrglmod 21135  LIdealclidl 21172  RSpancrsp 21173  IDLsrgcidlsrg 33520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-idlsrg 33521
This theorem is referenced by:  idlsrgmulrssin  33533  zarclsun  33906
  Copyright terms: Public domain W3C validator